

The HAProxy Guide to
Multi-Layer Security
Defense in Depth Using
the Building Blocks of

HAProxy

Chad Lavoie

Table of Contents

Our Approach to Multi-Layer Security 4

Introduction to HAProxy ACLs 6
Formatting an ACL 7
Fetches 11
Converters 12
Flags 13
Matching Methods 14
Things to do with ACLs 16
Selecting a Backend 18
Setting an HTTP Header 20
Changing the URL 21
Updating Map Files 21
Caching 23
Using ACLs to Block Requests 23
Updating ACL Lists 26
Conclusion 27

Introduction to HAProxy Stick Tables 28
Uses of Stick Tables 29
Defining a Stick Table 31
Making Decisions Based on Stick Tables 44
Other Considerations 49
Conclusion 54

Introduction to HAProxy Maps 55
The Map File 56
Modifying the Values 60

The HAProxy Guide to Multi-Layer Security 2

Putting It Into Practice 68
Conclusion 72

Application-Layer DDoS Attack Protection 73
HTTP Flood 74
Manning the Turrets 75
Setting Request Rate Limits 77
Slowloris Attacks 81
Blocking Requests by Static Characteristics 82
Protecting TCP (non-HTTP) Services 86
The Stick Table Aggregator 89
The reCAPTCHA and Antibot Modules 90
Conclusion 93

Bot Protection with HAProxy 94
HAProxy Load Balancer 95
Bot Protection Strategy 96
Beyond Scrapers 105
Whitelisting Good Bots 109
Identifying Bots By Their Location 111
Conclusion 114

The HAProxy Enterprise WAF 115
A Specific Countermeasure 116
Routine Scanning 117
HAProxy Enterprise WAF 124
Retesting with WAF Protection 126
Conclusion 129

The HAProxy Guide to Multi-Layer Security 3

Our Approach to
Multi-Layer Security

Defending your infrastructure can involve a dizzying

number of components: from network firewalls to
intrusion-detection systems to access control safeguards.
Wouldn't it be nice to simplify this? We always like to be the
bearer of good news. So, do you know that the HAProxy load
balancer—which you might already be using—is packed full
of security features?

HAProxy is used all over the globe for adding resilience to
critical websites and services. As a high-performance,
open-source load balancer that so many companies depend
on, making it reliable gets top billing and it's no surprise that
that's what people know it for. However, the same
components that you might use for sticking a client to a
server, routing users to the proper backend, and mapping
large sets of data to variables can be used to secure your
infrastructure.

In this book, we decided to cast some of these battle-tested
capabilities in a different light. To start off, we'll introduce you

The HAProxy Guide to Multi-Layer Security 4

to the building blocks that make up HAProxy: ACLs, stick
tables, and maps. Then, you will see how when combined
they allow you to resist malicious bot traffic, dull the power of
a DDoS attack, and other handy security recipes.

HAProxy Technologies, the company behind HAProxy, owns
its mission to provide advanced protection for those who
need it. Throughout this book, we'll highlight areas where
HAProxy Enterprise, which combines the stable codebase of
HAProxy with an advanced suite of add-ons, expert support
and professional services, can layer on additional defenses.

At the end, you'll learn about the HAProxy Web Application
Firewall, which catches application-layer attacks that are
missed by other types of firewalls. In today's threat-rich
environment, a WAF is an essential service.

This book is for those new to HAProxy, as well as those
looking to learn some new tricks. In the end, if we've
heightened your awareness to the attacks leveraged by
hackers and the creative ways of shutting them down, then
we'll feel like we've done our job.

The HAProxy Guide to Multi-Layer Security 5

Introduction to
HAProxy ACLs

When IT pros add load balancers into their

infrastructure, they’re looking for the ability to scale out their
websites and services, get better availability, and gain more
restful nights knowing that their critical services are no longer
single points of failure. Before long, however, they realize that
with a full-featured load balancer like HAProxy Enterprise,
they can add in extra intelligence to inspect incoming traffic
and make decisions on the fly.

For example, you can restrict who can access various
endpoints, redirect non-HTTPS traffic to HTTPS, and detect
and block malicious bots and scanners; you can define
conditions for adding HTTP headers, change the URL or
redirect the user.

Access Control Lists, or ACLs, in HAProxy allow you to test
various conditions and perform a given action based on those
tests. These conditions cover just about any aspect of a
request or response such as searching for strings or patterns,
checking IP addresses, analyzing recent request rates (via

The HAProxy Guide to Multi-Layer Security 6

stick tables), and observing TLS statuses. The action you take
can include making routing decisions, redirecting requests,
returning static responses and so much more. While using
logic operators (AND, OR, NOT) in other proxy solutions might
be cumbersome, HAProxy embraces them to form more
complex conditions.

Formatting an ACL
There are two ways of specifying an ACL—a named ACL and
an anonymous or in-line ACL. The first form is a named ACL:

acl is_static path -i -m beg /static

We begin with the acl keyword, followed by a name, followed
by the condition. Here we have an ACL named is_static. This
ACL name can then be used with if and unless statements
such as use_backend be_static if is_static. This form
is recommended when you are going to use a given condition
for multiple actions.

acl is_static path -i -m beg /static

use_backend be_static if is_static

The condition, path -i -m beg /static, checks to see if
the URL starts with /static. You’ll see how that works along
with other types of conditions later in this chapter.

The second form is an anonymous or in-line ACL:

The HAProxy Guide to Multi-Layer Security 7

use_backend be_static if { path -i -m beg /static

}

This does the same thing that the above two lines would do,
just in one line. For in-line ACLs, the condition is contained
inside curly braces.

In both cases, you can chain multiple conditions together.
ACLs listed one after another without anything in between
will be considered to be joined with an and. The condition
overall is only true if both ACLs are true. (Note: ↪ means
continue on same line)

http-request deny if { path -i -m beg /api }

 ↪ { src 10.0.0.0/16 }

This will prevent any client in the 10.0.0.0/16 subnet from
accessing anything starting with /api, while still being able to
access other paths.

Adding an exclamation mark inverts a condition:

http-request deny if { path -i -m beg /api }

 ↪ !{ src 10.0.0.0/16 }

Now only clients in the 10.0.0.0/16 subnet are allowed to
access paths starting with /api while all others will be
forbidden.

The IP addresses could also be imported from a file:

The HAProxy Guide to Multi-Layer Security 8

http-request deny if { path -i -m beg /api }

 ↪ { src -f /etc/hapee-1.9/blacklist.acl }

Within blacklist.acl you would then list individual or a range
of IP addresses using CIDR notation to block, as follows:

192.168.122.3

192.168.122.0/24

You can also define an ACL where either condition can be
true by using ||:

http-request deny if { path -i -m beg /evil } ||

 ↪ { path -i -m end /evil }

With this, each request whose path starts with /evil (e.g.
/evil/foo) or ends with /evil (e.g. /foo/evil) will be denied.

You can also do the same to combine named ACLs:

acl starts_evil path -i -m beg /evil

acl ends_evil path -i -m end /evil

http-request deny if starts_evil || ends_evil

With named ACLs, specifying the same ACL name multiple
times will cause a logical OR of the conditions, so the last
block can also be expressed as:

The HAProxy Guide to Multi-Layer Security 9

acl evil path_beg /evil

acl evil path_end /evil

http-request deny if evil

This allows you to combine ANDs and ORs (as well as named
and in-line ACLs) to build more complicated conditions, for
example:

http-request deny if evil !{ src 10.0.0.0/16 }

This will block the request if the path starts or ends with /evil,
but only for clients that are not in the 10.0.0.0/16 subnet.

Did you know? Innovations such as Elastic Binary Trees or
EB trees have shaped ACLs into the high performing feature
they are today. For example, string and IP address matches
rely on EB trees that allow ACLs to process millions of entries
while maintaining the best in class performance and
efficiency that HAProxy is known for.

From what we’ve seen so far, each ACL condition is broken
into two parts—the source of the information (or a fetch),
such as path and src, and the string it is matching against. In
the middle of these two parts, one can specify flags (such as
-i for a case-insensitive match) and a matching method (beg
to match on the beginning of a string, for example). All of
these components of an ACL will be expanded on in the
following sections.

The HAProxy Guide to Multi-Layer Security 10

Fetches

Now that you understand the basic way to format an ACL
you might want to learn what sources of information you can
use to make decisions on. A source of information in HAProxy
is known as a fetch. These allow ACLs to get a piece of
information to work with.

You can see the full list of fetches available in the
documentation. The documentation is quite extensive and
that is one of the benefits of having HAProxy Enterprise
Support. It saves you time from needing to read through
hundreds of pages of documentation.

Here are some of the more commonly used fetches:

src Returns the client IP address that made
the request

path Returns the path the client requested

The HAProxy Guide to Multi-Layer Security 11

url_param(foo) Returns the value of a given URL parameter

req.hdr(foo) Returns the value of a given HTTP request
header (e.g. User-Agent or Host)

ssl_fc A boolean that returns true if the connection
was made over SSL and HAProxy is locally
deciphering it

Converters

Once you have a piece of information via a fetch, you might
want to transform it. Converters are separated by commas
from fetches, or other converters if you have more than one,
and can be chained together multiple times.

Some converters (such as lower and upper) are specified by
themselves while others have arguments passed to them. If
an argument is required it is specified in parentheses. For
example, to get the value of the path with /static removed
from the start of it, you can use the regsub converter with a
regex and replacement as arguments:

The HAProxy Guide to Multi-Layer Security 12

path,regsub(^/static,/)

As with fetches, there are a wide variety of converters, but
below are some of the more popular ones:

lower Changes the case of a sample to lowercase

upper Changes the case of a sample to uppercase

base64 Base64 encodes the specified string (good for
matching binary samples)

field Allows you to extract a field similar to awk. For
example if you have “a|b|c” as a sample and run
field(|,3) on it you will be left with “c”

bytes Extracts some bytes from an input binary sample
given an offset and length as arguments

map Looks up the sample in the specified map file and
outputs the resulting value

Flags
You can put multiple flags in a single ACL, for example:

path -i -m beg -f /etc/hapee/paths_secret.acl

This will perform a case insensitive match based on the
beginning of the path and matching against patterns stored

The HAProxy Guide to Multi-Layer Security 13

in the specified file. There aren’t as many flags as there are
fetch/converter types, but there is a nice variety.

Here are some of the commonly used ones:

-i Perform a case-insensitive match (so a sample of
FoO will match a pattern of Foo)

-f Instead of matching on a string, match from an ACL
file. This ACL file can have lists of IP’s, strings, regexes,
etc. As long as the list doesn’t contain regexes, then
the file will be loaded into the b-tree format and can
handle lookups of millions of items almost instantly

-m Specify the match type. This is described in detail
in the next section.

You’ll find a handful of others if you scroll down from the ACL
Basics section of the documentation.

Matching Methods

The HAProxy Guide to Multi-Layer Security 14

Now you have a sample from converters and fetches, such as
the requested URL path via path, and something to match
against via the hardcoded path /evil. To compare the former
to the latter you can use one of several matching methods. As
before, there are a lot of matching methods and you can see
the full list by scrolling down (further than the flags) in the
ACL Basics section of the documentation. Here are some
commonly used matching methods:

str Perform an exact string match

beg Check the beginning of the string with the pattern,
so a sample of “foobar” will match a pattern of “foo”
but not “bar”.

end Check the end of a string with the pattern, so a
sample of foobar will match a pattern of bar but
not foo.

sub A substring match, so a sample of foobar will match
patterns foo, bar, oba.

reg The pattern is compared as a regular expression
against the sample. Warning: This is CPU hungry
compared to the other matching methods and should
be avoided unless there is no other choice.

found This is a match that doesn’t take a pattern at all. The
match is true if the sample is found, false otherwise.
This can be used to (as a few common examples) see
if a header (req.hdr(x-foo) -m found) is present, if
a cookie is set (cook(foo) -m found), or if a sample
is present in a map
(src,map(/etc/hapee-1.9/ip_to_country.map)
-m found).

The HAProxy Guide to Multi-Layer Security 15

len Return the length of the sample (so a sample of foo
with -m len 3 will match)

Up until this point, you may have noticed the use of path -m
beg /evil for comparing our expected path /evil with the
beginning of the sample we’re checking. It uses the matching
method beg. There are a number of places where you can use
a shorthand that combines a sample fetch and a matching
method in one argument. In this example path_beg /foo and
path -m beg /foo are exactly the same, but the former is
easier to type and read. Not all fetches have variants with
built-in matching methods (in fact, most don’t), and there’s a
restriction that if you chain a fetch with a converter you have
to specify it using a flag (unless the last converter on the
chain has a match variant, which most don’t).

If there isn’t a fetch variant of the desired matching method,
or if you are using converters, you can use the -m flag noted
in the previous section to specify the matching method.

Things to do with ACLs
Now that you know how to define ACLs, let’s get a quick idea
for the common actions in HAProxy that can be controlled by
ACLs. This isn’t meant to give you a complete list of all the
conditions or ways that these rules can be used, but rather
provide fuel to your imagination for when you encounter
something with which ACLs can help.

The HAProxy Guide to Multi-Layer Security 16

Redirecting a Request
The command http-request redirect location sets the
entire URI. For example, to redirect non-www domains to
their www variant you can use:

http-request redirect location

 ↪ http://www.%[hdr(host)]%[capture.req.uri]

 ↪ unless { hdr_beg(host) -i www }

In this case, our ACL, hdr_beg(host) -i www, ensures that
the client is redirected unless their Host HTTP header already
begins with www.

The command http-request redirect scheme changes
the scheme of the request while leaving the rest alone. This
allows for trivial HTTP-to-HTTPS redirect lines:

http-request redirect scheme https if !{ ssl_fc }

Here, our ACL !{ ssl_fc } checks whether the request did
not come in over HTTPS.

The command http-request redirect prefix allows you
to specify a prefix to redirect the request to. For example, the
following line causes all requests that don’t have a URL path
beginning with /foo to be redirected to /foo/{original URI
here}:

The HAProxy Guide to Multi-Layer Security 17

http-request redirect prefix /foo if

 ↪ !{ path_beg /foo }

For each of these a code argument can be added to specify a
response code. If not specified it defaults to 302. Supported
response codes are 301, 302, 303, 307, and 308. For
example:

redirect scheme code 301 https if !{ ssl_fc }

This will redirect HTTP requests to HTTPS and tell clients
that they shouldn’t keep trying HTTP. Or for a more secure
version of this, you could inject the Strict-Transport-Security
header via http-response set-header.

Selecting a Backend

In HTTP Mode
The use_backend line allows you to specify conditions for
using another backend. For example, to send traffic
requesting the HAProxy Stats webpage to a dedicated
backend, you can combine use_backend with an ACL that
checks whether the URL path begins with /stats:

use_backend be_stats if { path_beg /stats }

The HAProxy Guide to Multi-Layer Security 18

Even more interesting, the backend name can be dynamic
with log-format style rules (i.e. %[<fetch_method>]). In the
following example, we put the path through a map and use
that to generate the backend name:

use_backend

 ↪ be_%[path,map_beg(/etc/hapee-1.9/paths.map)]

If the file paths.map contains /api api as a key-value pair,
then traffic will be sent to be_api, combining the prefix be_
with the string api. If none of the map entries match and
you’ve specified the optional second parameter to the map
function, which is the default argument, then that default will
be used.

use_backend

 ↪ be_%[path,map_beg(/etc/hapee-1.9/paths.map,

 ↪ mydefault)]

In this case, if there isn’t a match in the map file, then the
backend be_mydefault will be used. Otherwise, without a
default, traffic will automatically fall-through this rule in
search of another use_backend rule that matches or the
default_backend line.

In TCP Mode
We can also make routing decisions for TCP mode traffic, for
example directing traffic to a special backend if the traffic is
SSL:

The HAProxy Guide to Multi-Layer Security 19

tcp-request inspect-delay 10s

use_backend be_ssl if { req.ssl_hello_type gt 0 }

Note that for TCP-level routing decisions, when requiring
data from the client such as needing to inspect the request,
the inspect-delay statement is required to avoid HAProxy
passing the phase by without any data from the client yet. It
won’t wait the full 10 seconds unless the client stays silent
for 10 seconds. It will move ahead as soon as it can decide
whether the buffer has an SSL hello message.

Setting an HTTP
Header
There are a variety of options for adding an HTTP header to
the request (transparently to the client). Combining these
with an ACL lets you only set the header if a given condition
is true.

add-header Adds a new header. If a header of the
same name was sent by the client this will
ignore it, adding a second header of the
same name.

set-header Will add a new header in the same way as
add-header, but if the request already has
a header of the same name it will be
overwritten. Good for security-sensitive flags
that a client might want to tamper with.

The HAProxy Guide to Multi-Layer Security 20

replace-header Applies a regex replacement of the
named header (injecting a fake cookie
into a cookie header, for example)

del-header Deletes any header by the specified
name from the request. Useful for
removing an x-forwarded-for header
before option forwardfor
adds a new one (or any custom header
name used there).

Changing the URL
This allows HAProxy to modify the path that the client
requested, but transparently to the client. Its value accepts
log-format style rules (i.e. %[<fetch_method>]) so you can
make the requested path dynamic. For example, if you
wanted to add /foo/ to all requests (as in the redirect example
above) without notifying the client of this, use:

http-request set-path /foo%[path] if

 ↪ !{ path_beg /foo }

There is also set-query, which changes the query string
instead of the path, and set-uri, which sets the path and
query string together.

Updating Map Files
These actions aren’t used very frequently, but open up
interesting possibilities in dynamically adjusting HAProxy

The HAProxy Guide to Multi-Layer Security 21

maps. This can be used for tasks such as having a login
server tell HAProxy to send a clients’ (in this case by session
cookie) requests to another backend from then on:

http-request set-var(txn.session_id)

 ↪ cook(sessionid)

use_backend

 ↪ be_%[var(txn.session_id),

 ↪ map(/etc/hapee-1.9/sessionid.map)]

 ↪ if { var(txn.session_id),

 ↪ map(/etc/hapee-1.9/sessionid.map) -m found }

http-response

 ↪ set-map(/etc/hapee-1.9/sessionid.map)

 ↪ %[var(txn.session_id)]

 ↪ %[res.hdr(x-new-backend)]

 ↪ if { res.hdr(x-new-backend) -m found }

default_backend be_login

Now if a backend sets the x-new-backend header in a
response, HAProxy will send subsequent requests with the
client’s sessionid cookie to the specified backend. Variables
are used as, otherwise, the request cookies are inaccessible
by HAProxy during the response phase—a solution you may
want to keep in mind for other similar problems that HAProxy
will warn about during startup.

There is also the related del-map to delete a map entry based
on an ACL condition.

The HAProxy Guide to Multi-Layer Security 22

Did you know? As with most actions, http-response set-map
has a related action called http-request set-map. This is
useful as a pseudo API to allow backends to add and remove
map entries.

Caching
New to HAProxy 1.8 is small object caching, allowing the
caching of resources based on ACLs. This, along with
http-response cache-store, allows you to store select
requests in HAProxy’s cache system. For example, given that
we’ve defined a cache named icons, the following will store
responses from paths beginning with /icons and reuse them
in future requests:

http-request set-var(txn.path) path

acl is_icons_path var(txn.path) -m beg /icons/

http-request cache-use icons if is_icons_path

http-response cache-store icons if is_icons_path

Using ACLs to Block
Requests
Now that you’ve familiarized yourself with ACLs, it’s time to
do some request blocking!

The HAProxy Guide to Multi-Layer Security 23

The command http-request deny returns a 403 to the
client and immediately stops processing the request. This is
frequently used for DDoS/Bot mitigation as HAProxy can
deny a very large volume of requests without bothering the
web server.

Other responses similar to this include http-request
tarpit (keep the request hanging until timeout tarpit
expires, then return a 500—good for slowing down bots by
overloading their connection tables, if there aren’t too many
of them), http-request silent-drop (have HAProxy stop
processing the request but tell the kernel to not notify the
client of this – leaves the connection from a client perspective
open, but closed from the HAProxy perspective; be aware of
stateful firewalls).

With both deny and tarpit you can add the deny_status flag
to set a custom response code instead of the default 403/500
that they use out of the box. For example using
http-request deny deny_status 429 will cause HAProxy
to respond to the client with the error 429: Too Many
Requests.

In the following subsections we will provide a number of
static conditions for which blocking traffic can be useful.

HTTP Protocol Version
A number of attacks use HTTP 1.0 as the protocol version, so
if that is the case it’s easy to block these attacks using the
built-in ACL HTTP_1.0:

The HAProxy Guide to Multi-Layer Security 24

http-request deny if HTTP_1.0

Contents of the user-agent String
We can also inspect the User-Agent header and deny if it
matches a specified string.

http-request deny if { req.hdr(user-agent)

 ↪ -m sub evil }

This line will deny the request if the -m sub part of the
user-agent request header contains the string evil anywhere
in it. Remove the -m sub, leaving you with
req.hdr(user-agent) evil as the condition, and it will be
an exact match instead of a substring.

Length of the user-agent String
Some attackers will attempt to bypass normal user agent
strings by using a random md5sum, which can be identified
by length and immediately blocked:

http-request deny if { req.hdr(user-agent) -m

 ↪ len 32 }

Attackers can vary more with their attacks, so you can rely on
the fact that legitimate user agents are longer while also
being set to a minimum length:

The HAProxy Guide to Multi-Layer Security 25

http-request deny if { req.hdr(user-agent) -m

 ↪ len le 32 }

This will then block any requests which have a user-agent
header shorter than 32 characters.

Path
If an attacker is abusing a specific URL that legitimate clients
don’t, one can block based on path:

http-request deny if { path /api/wastetime }

Or you can prevent an attacker from accessing hidden files or
folders:

http-request deny if { path -m sub /. }

Updating ACL Lists

Using lb-update
ACL files are updated when HAProxy is reloaded to read the
new configuration, but it is also possible to update its
contents during runtime.

HAProxy Enterprise ships with a native module called
lb-update that can be used with the following configuration:

The HAProxy Guide to Multi-Layer Security 26

dynamic update

 update id /etc/hapee-1.9/whitelist.acl

 ↪ url http://192.168.122.1/whitelist.acl

 ↪ delay 60s

HAPEE will now update the ACL contents every 60 seconds
by requesting the specified URL. Support also exists for
retrieving the URL via HTTPS and using client certificate
authentication.

Using the Runtime API
To update the configuration during runtime, simply use the
Runtime API to issue commands such as the following:

echo "add acl /etc/hapee-1.9/whitelist.acl
1.2.3.4"
 ↪ | socat stdio /var/run/hapee-lb.sock

Conclusion
That’s all folks! We have provided you with some examples to
show the power within the HAProxy ACL system. The above
list isn’t exhaustive or anywhere near complete, but it should
give you the building blocks needed to solve a vast array of
problems you may encounter quickly and easily. Use your
imagination and experiment with ACLs.

The HAProxy Guide to Multi-Layer Security 27

Introduction to
HAProxy Stick Tables

HTTP requests are stateless by design. However, this

raises some questions regarding how to track user activities,
including malicious ones, across requests so that you can
collect metrics, block users, and make other decisions based
on state. The only way to track user activities between one
request and the next is to add a mechanism for storing events
and categorizing them by client IP or other key.

Out of the box, HAProxy Enterprise and HAProxy give you a
fast, in-memory storage called stick tables. Released in 2010,
stick tables were created to solve the problem of server
persistence. However, StackExchange, the network of Q&A
communities that includes Stack Overflow, saw the potential
to use them for rate limiting of abusive clients, aid in bot
protection, and tracking data transferred on a per client basis.
They sponsored further development of stick tables to
expand the functionality. Today, stick tables are an incredibly
powerful subsystem within HAProxy.

The HAProxy Guide to Multi-Layer Security 28

The name, no doubt, reminds you of sticky sessions used for
sticking a client to a particular server. They do that, but also a
lot more. Stick tables are a type of key-value storage where
the key is what you track across requests, such as a client IP,
and the values consist of counters that, for the most part,
HAProxy takes care of calculating for you. They are
commonly used to store information like how many requests
a given IP has made within the past 10 seconds. However,
they can be used to answer a number of questions, such as:

● How many API requests has this API key been used
for during the last 24 hours?

● What TLS versions are your clients using? (e.g. can
you disable TLS 1.1 yet?)

● If your website has an embedded search field, what
are the top search terms people are using?

● How many pages is a client accessing during a time
period? Is it enough as to signal abuse?

Stick tables rely heavily on HAProxy’s access control lists, or
ACLs. When combined with the Stick Table Aggregator
that’s offered within HAProxy Enterprise, stick tables bring
real-time, cluster-wide tracking. Stick tables are an area
where HAProxy’s design, including the use of Elastic Binary
Trees and other optimizations, really pays off.

Uses of Stick Tables
There are endless uses for stick tables, but here we’ll
highlight three areas: server persistence, bot detection, and
collecting metrics.

The HAProxy Guide to Multi-Layer Security 29

Server persistence, also known as sticky sessions, is probably
one of the first uses that comes to mind when you hear the
term “stick tables”. For some applications, cookie-based or
consistent hashing-based persistence methods aren’t a good
fit for one reason or another. With stick tables, you can have
HAProxy store a piece of information, such as an IP address,
cookie, or range of bytes in the request body (a username or
session id in a non-HTTP protocol, for example), and
associate it with a server. Then, when HAProxy sees new
connections using that same piece of information, it will
forward the request to the same server. This is really useful if
you’re storing application sessions in memory on your
servers.

Beyond the traditional use case of server persistence, you can
also use stick tables for defending against certain types of bot
threats. Request floods, login brute force attacks, vulnerability
scanners, web scrapers, slow loris attacks—stick tables can
deal with them all.

A third area we’ll touch on is using stick tables for collecting
metrics. Sometimes, you want to get an idea of what is going
on in HAProxy, but without enabling logging and having to
parse the logs to get the information in question. Here’s
where the power of the Runtime API comes into play. Using
the API, you can read and analyze stick table data from the
command line, a custom script or executable program. This
opens the door to visualizing the data in your dashboard of
choice. If you prefer a packaged solution, HAProxy Enterprise
comes with a fully-loaded dashboard for visualizing stick
table data.

The HAProxy Guide to Multi-Layer Security 30

Defining a Stick Table

A stick table collects and stores data about requests that are
flowing through your HAProxy load balancer. Think of it like a
machine that color codes cars as they enter a race track. The
first step then is setting up the amount of storage a stick
table should be allowed to use, how long data should be kept,
and what data you want to observe. This is done via the
stick-table directive in a frontend or backend.

Here is a simple stick table definition:

backend webfarm

 stick-table type ip size 1m expire 10s

 ↪ store http_req_rate(10s)

In this line we specify a few arguments: type, size, expire
and store. The type, which is ip in this case, decides the

The HAProxy Guide to Multi-Layer Security 31

classification of the data we’ll be capturing. The size
configures the number of entries it can store—in this case one
million. The expire time, which is the time since a record in the
table was last matched, created or refreshed, informs
HAProxy when to remove data. The store argument declares
the values that you’ll be saving.

Did you know? If just storing rates, then the expire argument
should match the longest rate period; that way the counters
will be reset to 0 at the same time that the period ends.

Each frontend or backend section can only have one
stick-table defined in it. The downside to that is if you
want to share that storage with other frontends and
backends. The good news is that you can define a frontend or
backend whose sole purpose is holding a stick table. Then
you can use that stick table elsewhere using the table
parameter. Here’s an example (we’ll explain the
http-request track-sc0 line in the next section):

backend st_src_global

 stick-table type ip size 1m expire 10s

 ↪ store http_req_rate(10s)

frontend fe_main

 bind *:80

 http-request track-sc0 src table st_src_global

Two other stick table arguments that you’ll want to know
about are nopurge and peers. The former tells HAProxy to
not remove entries if the table is full and the latter specifies a

The HAProxy Guide to Multi-Layer Security 32

peers section for syncing to other nodes. We’ll cover that
interesting scenario a little later.

When adding a stick table and setting its size it’s important to
keep in mind how much memory the server has to spare after
taking into account other running processes. Each stick table
entry takes about 50 bytes of memory for its own
housekeeping. Then the size of the key and the counters it’s
storing add up to the total.

Keep in mind a scenario where you’re using stick tables to set
up a DDoS defense system. An excellent use case, but what
happens when the attacker brings enough IPs to the game?
Will it cause enough entries to be added so that all of the
memory on your server is consumed?
Memory for stick tables isn’t used until it’s needed, but even
so, you should keep in mind the size that it could grow to and
set a cap on the number of entries with the size argument.

Tracking Data

The HAProxy Guide to Multi-Layer Security 33

Now that you’ve defined a stick table, the next step is to track
things in it. This is done by using http-request track-sc0,
tcp-request connection track-sc0, or tcp-request
content track-sc0. The first thing to consider is the use of
a sticky counter, sc0. This is used to assign a slot with which
to track the connections or requests. The maximum number
that you can replace 0 with is set by the build-time variable
MAX_SESS_STKCTR. In HAProxy Enterprise, it’s set to 12,
allowing sc0 through sc11.

This can be a bit of a tricky concept, so here is an example to
help explain the nuances of it:

The HAProxy Guide to Multi-Layer Security 34

backend st_src_global

 stick-table type ip size 1m expire 10m

 ↪ store http_req_rate(10m)

backend st_src_login

 stick-table type ip size 1m expire 10m

 ↪ store http_req_rate(10m)

backend st_src_api

 stick-table type ip size 1m expire 10m

 ↪ store http_req_rate(10m)

frontend fe_main

 bind *:80

 http-request track-sc0 src table st_src_global

 http-request track-sc1 src table st_src_login

 ↪ if { path_beg /login }

 http-request track-sc1 src table st_src_api

 ↪ if { path_beg /api }

In this example, the line http-request track-sc0 doesn’t
have an if statement to filter out any paths, so sc0 is tracking
all traffic. Querying the st_src_global stick table with the
Runtime API will show the HTTP request rate per client IP.
Easy enough.

Sticky counter 1, sc1, is being used twice: once to track
requests beginning with /login and again to track requests
beginning with /api. This is okay because no request passing
through this block is going to start with both /login and /api,
so one sticky counter can be used for both tables.

The HAProxy Guide to Multi-Layer Security 35

Even though both tables are being tracked with sc1 they are
their own stick table definitions, and thus keep their data
separate. So if you make a few requests and then query the
tables via the Runtime API, you’ll see results like the
following:

$ echo "show table st_src_global"

 ↪ | socat stdio

 ↪ UNIX-CONNECT:/var/run/hapee-1.9/hapee-lb.sock

table: st_src_global, type: ip, size:1048576,

used:1 0x18f907c: key=127.0.0.1 use=0 exp=3583771

http_req_rate(86400000)=3

You can see three total requests in the st_src_global table,
two requests in the st_src_api table, and one in the
st_src_login table. Even though the last two used the same
sticky counter, the data was segregated. If I had made a
mistake and tracked both st_src_global and st_src_login
using sc0, then I’d find that the st_src_login table was empty
because when HAProxy went to track it, sc0 was already
used for this connection.

In addition, this data can be viewed using HAProxy
Enterprise’s Real-Time Dashboard.

The HAProxy Guide to Multi-Layer Security 36

Using the dashboard can be quicker than working from the
command-line and gives you options for filtering and sorting.

Types of Keys
A stick table tracks counters for a particular key, such as a
client IP address. The key must be in an expected type, which
is set with the type argument. Each type is useful for
different things, so let’s take a look at them:

Type Size (b) Description

ip 50 This will store an IPv4 address. It’s
primarily useful for tracking activities of
the IP making the request and can be
provided by HAProxy with the fetch
method src. However, it can also be fed a
sample such as req.hdr(x-forwarded-for)
to get the IP from another proxy.

ipv6 60 This will store an IPv6 address or an
IPv6 mapped IPv4 address. It’s the same
as the ip type otherwise.

The HAProxy Guide to Multi-Layer Security 37

integer 32 This is often used to store a client ID
number from a cookie, header, etc. It’s also
useful for storing things like the frontend ID
via fe_id or int(1) to track everything under
one entry (reasons for which we will cover
in a later section)

string len This will store a string and is commonly
used for session IDs, API keys and similar.
It’s also useful when creating a dummy
header to store custom combinations of
samples. It requires a len argument followed
by the number of bytes that can be stored.
Larger samples will be truncated.

binary len This is used for storing binary samples.
It’s most commonly used for persistence
by extracting a client ID from a TCP stream
with the bytes converter. It can also be used
to store other samples such as the base32
(IP+URL) fetch. It requires a len argument
followed by the number of bytes that can
be stored. Longer samples will be truncated.

The type that you choose defines the keys within the table.
For example, if you use a type of ip then we’ll be capturing IP
addresses as the keys.

Types of Values
After the store keyword comes a comma delimited list of the
values that should be associated with a given key. While
some types can be set using ACLs or via the Runtime API,
most are calculated automatically by built-in fetches in

The HAProxy Guide to Multi-Layer Security 38

HAProxy like http_req_rate. There can be as many values
stored as you would like on a given key.

There are many values that a stick table can track. For a full
list of values, see the stick-table section of the
documentation, but here are some interesting highlights:

http_req_rate
This is likely the most frequently stored/used value in stick
tables. As its name may imply, it stores the number of HTTP
requests, regardless of whether they were accepted or not,
that the tracked key (e.g. source IP address) has made over
the specified time period. Using this can be as simple as the
following:

stick-table type ip size 1m expire 10s

 ↪ store http_req_rate(10s)

tcp-request inspect-delay 10s

tcp-request content track-sc0 src

http-request deny if { sc_http_req_rate(0) gt 10 }

The first line defines a stick table for tracking IP addresses
and their HTTP request rates over the last ten seconds. This
is done by storing the http_req_rate value, which accepts
the period as a parameter. Note that we’ve set the expire
parameter to match the period of 10 seconds.

The second line is what inserts or updates a key in the table
and updates its counters. Using the sticky counter sc0, it sets
the key to the source IP using the src fetch method. You
might wonder when to use tcp-request content

The HAProxy Guide to Multi-Layer Security 39

track-sc0 instead of http-request track-sc0. It’s mostly
a matter of preference, but since the TCP phase happens
before the HTTP phase, you should try to order tcp-*
directives before http-* ones or else you’ll get warnings when
HAProxy starts up. Also, if you want the ability to deny
connections in the earlier TCP phase, lean towards using the
tcp-request variant. However, if you’re capturing HTTP
headers, cookies or other data encapsulated within the HTTP
message, then to use tcp-request content track-s0, you
must use an inspect-delay directive. We’ll talk about that a
little later on.

Finally the third line denies the request with a 403 Forbidden
if the client has made more than 10 requests over the
expiration period of 10 seconds. Notice that when deciding
whether to deny the request, we check the value of
http_req_rate with the sc_http_req_rate function,
passing it 0, the number corresponding to our sticky counter,
sc0.

Values that return a rate, like http_req_rate, all take an
argument that is the time range that they cover. The
maximum time that can be tracked is about 30 days (e.g.
30d). For longer periods of time consider using the counter
http_req_cnt and extrapolate from there.

conn_cur and conn_rate
Two closely related counters, conn_cur and conn_rate, track
how many connections a given key has or is making. The
conn_cur counter is automatically incremented or
decremented when the tcp-request content track-sc0
src line is processed to reflect the number of currently open

The HAProxy Guide to Multi-Layer Security 40

connections for the key, or source IP. The conn_rate counter
is similar but is given a period of time and calculates an
average rate of new connections over that period.

stick-table type ip size 1m expire 10s

 ↪ store conn_cur

tcp-request content track-sc0 src

tcp-request content reject if { sc_conn_cur(0)

 ↪ gt 10 }

One way to use this is to detect when a client has opened too
many connections so you can deny any more connections
from them. In this case the connection will be rejected and
the connection closed if the source IP currently has more than
10 connections open at the moment.

These counters are primarily used to protect against attacks
that involve a lot of new connections that originate from the
same IP address. In the next section, you’ll see HTTP
counters, which are more effective at protecting against
HTTP request floods. The HTTP counters track requests
independently of whether HTTP keep-alive or multiplexing
are used.

However in the case of floods of new connections, these
counters can stop them best.

http_err_rate
This tracks the rate of HTTP requests that end in an error
code (4xx) response. This has a few useful applications:

The HAProxy Guide to Multi-Layer Security 41

● You can detect vulnerability scanners, which tend to
get a lot of error pages like 404 Not Found

● You can detect missing pages by using a URL path as
the stick table key. For example:

stick-table type string len 128 size 2k expire 1d

 ↪ store http_err_rate(1d)

tcp-request content track-sc0 path

This will make a table that can be retrieved by the Runtime
API and shows the error rate of various paths:

table: fe_main, type: string, size:2048, used:2

0xbc929c: key=/ use=0 exp=86387441

http_err_rate(86400000)=0

0xbc99ac: key=/foobar use=0 exp=86390564

http_err_rate(86400000)=1

● You can detect login brute force attacks or scanners.

If your login page produces an HTTP error code when
a login fails, then this can be used to detect brute
force attacks. For this you would track on src rather
than on path as in the previous example.

bytes_out_rate
The bytes_out_rate counter measures the rate of traffic
being sent from your server for a given key, such as a path. Its

The HAProxy Guide to Multi-Layer Security 42

primary use is to identify content or users who are creating
the largest amounts of traffic. However, it has other
interesting uses as well. It can help measure traffic by site or
path, which you can use in capacity planning or to see which
resources might need to be moved to their own cluster (e.g. If
you operate a CDN, this could be used to select heavily
trafficked content to move to other caching nodes).

We might also use bytes_out_rate as another data set to
feed into an anomaly detection system (e.g. a web script that
never sends much traffic all of a sudden begins sending 3gb
might indicate a successful exfiltration of data).

Similar to bytes_out_rate, bytes_in_rate observes how
much traffic a client is sending, which could be used to detect
anomalous behavior, to factor into billing on a VPN system
where client traffic is to be counted in both directions, and
that type of thing.

gpc0 / gpc1
The general purpose counters (gpc0 and gpc1) are
special—along with gpt0 (general purpose tag)—for
defaulting to 0 when created and for not automatically
updating. ACLs can be used to increase this counter via the
sc_inc_gpc0 fetch method so that you can track custom
statistics with it.

If you track gpc0_rate, it will automatically give you a view of
how quickly gpc0 is being incremented. This can tell you how
frequently this event is happening.

The HAProxy Guide to Multi-Layer Security 43

Making Decisions
Based on Stick Tables

Now that you’ve seen how to create stick table storage and
track data with it, you’ll want to be able to configure HAProxy
to take action based on that captured information. Going back
to a common use case for stick tables, let’s see how to use
the data to persist a client to a particular server. This is done
with the stick on directive and is usually found in a backend
section looking like the following:

stick-table type string len 32 size 100k expire

30m

stick on req.cook(sessionid)

The HAProxy Guide to Multi-Layer Security 44

In this example, notice that we don’t use the store parameter
on the stick-table directive. A server ID, which is an
integer that HAProxy uses to identify each server, is unique in
that you don’t need to define it via a store keyword for it to
be stored. If needed for a persistence setting, the server ID
will be stored in the stick table in question automatically.
After the stick on directive extracts the client’s session ID
from a cookie and stores it as the key in the table, the client
will continue to be directed to the same server.

While on the topic of persistence, let us say we have a cluster
of MySQL servers participating in master-master replication
and we are worried that writing to one might cause a
duplicate primary key if, at that moment, the primary master
goes down and then comes back up. Normally this can make
a rather complicated situation wherein both MySQL servers
have some queries that the other doesn’t and it requires a lot
of fighting to get them back in sync. Suppose that instead we
added the following to our MySQL backend?

backend mysql

 mode tcp

 stick-table type integer size 1 expire 1d

 stick on int(1)

 on-marked-down shutdown-sessions

 server primary 192.168.122.60:3306 check

 server backup 192.168.122.61:3306 check backup

With this configuration, we store only a single entry in the
stick table, where the key is 1 and the value is the server_id of
the active server. Now if the primary server goes down, the
backup server’s server_id will overwrite the value in the stick

The HAProxy Guide to Multi-Layer Security 45

table and all requests will keep going to the backup even if
the master comes back online. This can be undone by cycling
the backup node into maintenance mode, or via the Runtime
API, when you are ready to have the cluster resume normal
operations.

Did you know? on-marked-down shutdown-sessions causes
HAproxy to close all existing connections to a backend when
it goes down. Normally HAProxy allows existing connections
to finish which could result in duplicate primary keys if the
connections kept working or query timeouts if it didn’t.

Another way to use stick tables is for collecting information
about traffic to your website so that you can make decisions
based on it. Say that you wanted to know if it was safe to
disable TLS 1.1. You could set up a stick table that tracks the
TLS versions that people are using. Consider the following
example:

backend st_ssl_stats

 stick-table type string len 32 size 200

 ↪ expire 24d store http_req_rate(24d)

frontend fe_main

 tcp-request inspect-delay 10s

 tcp-request content track-sc0

 ↪ ssl_fc_protocol table st_ssl_stats

Now you can query the server and see which TLS protocols
have been used:

The HAProxy Guide to Multi-Layer Security 46

$ echo "show table st_ssl_stats" |

 ↪ socat stdio

↪

UNIX-CONNECT:/var/run/hapee-1.9/hapee-lb.sock

table: st_ssl_stats, type: string, size:200,

used:2

0xe4c62c: key=TLSv1 use=0 exp=2073596788

http_req_rate(2073600000)=1

0xe5a18c: key=TLSv1.2 use=0 exp=2073586582

http_req_rate(2073600000)=2

Or you could turn it around and track clients who have used
TLSv1.1 by IP address:

backend st_ssl_stats

 stick-table type ip size 200 expire 1h

 ↪ store http_req_rate(1d)

frontend fe_main

 tcp-request inspect-delay 10s

 tcp-request content track-sc0 src

 ↪ table st_ssl_stats if

 ↪ { ssl_fc_protocol TLSv1.1 }

Now your stick table is a list of IPs that have used TLSv1.1.
To learn more about the Runtime API, take a look at our blog
post Dynamic Configuration with the HAProxy Runtime API
(bit.ly/2SpOPDX).

The HAProxy Guide to Multi-Layer Security 47

If you look through the documentation you will see fetches
specific to stick tables like sc_http_req_rate (one for each
value you can store in a stick table) all starting with sc_. You
will notice in the documentation that some of them have sc0_,
sc1_, and sc2_ aliases without arguments. These forms are
deprecated as they don’t let you access all of the sticky
counters, but do the same thing. These fetches, in conjunction
with ACLs, can be used to protect your website from
malicious activity by returning the values in the stick table and
giving you information needed to decide whether to deny the
connection or request.

For example, to block requests that have made more than
100 requests over the time period defined on the stick table
definition and by the key defined in the track line, you would
use sc_http_req_rate in the following way:

http-request deny if { sc_http_req_rate(0) gt 100

}

If you aren’t tracking the key that you want to look up, you
can use the table_http_req_rate and similar fetches to
retrieve a value without updating it. Using track-sc* will
update http_req_rate and similar counters while looking up
a value like this will not. These work like converters where
they take the key as input, the table name as an argument,
and output the value. For example we could do:

http-request deny if { src,

 ↪ table_http_req_rate(st_src_global) gt 100 }

The HAProxy Guide to Multi-Layer Security 48

These fetches are a small amount of extra work for the CPU if
you are already tracking the key via an http-request
track-sc0 or tcp-request content track-sc0 line
elsewhere. However, there are a few good reasons for it:

● You want to check if a request should be blocked
without increasing the request counter by tracking it
(so that a client can make 10 requests a second and
everything above that gets blocked, rather than
making 10 requests in a second and having future
blocked requests keep them getting blocked until
they cool down)

● You want to pass another key; for example passing
req.arg(ip) instead of src would allow an API of
sorts where you could request
http://192.168.122.64/is_blocked?ip=192.168.122.
1 and see if that IP is blocked (or what its request
rate is).

● You’re using the Stick Table Aggregator and want to
query data from the table that contains it creates (a
new table is created that contains the aggregated
data).

Other Considerations

inspect-delay
Let’s talk about a line that is sometimes needed and ends up
causing confusion:

The HAProxy Guide to Multi-Layer Security 49

tcp-request inspect-delay 10s

You only need to use this in a frontend or backend when you
have an ACL on a statement that would be processed in an
earlier phase than HAProxy would normally have the
information. For example, tcp-request content reject if
{ path_beg /foo } needs a tcp-request inspect-delay
because HAProxy won’t wait in the TCP phase for the HTTP
URL path data. In contrast http-request deny if {
path_beg /foo } doesn’t need an tcp-request
inspect-delay line because HAProxy won’t process
http-request rules until it has an HTTP request.

When tcp-request inspect-delay is present, it will hold
the request until the rules in that block have the data they
need to make a decision or until the specified delay is
reached, whichever is first.

nbproc
If you are using the nbproc directive in the global section of
your configuration, then each HAProxy process has its own
set of stick tables. The net effect is that you’re not sharing
stick table information among those processes. Also note that
the peers protocol, discussed next, can’t sync between
processes on the same machine.

There are two ways to solve this. The first is to use the newer
nbthread directive instead. This is a feature introduced in
HAProxy Enterprise 1.8r1 and HAProxy 1.8 that enables
multithreading instead of multiple processes and shares
memory, thus sharing stick tables between threads running in

The HAProxy Guide to Multi-Layer Security 50

a single process. See our blog post Multithreading in
HAProxy (http://bit.ly/2WGp160) to learn more about it.

Another solution is to use a configuration like the following:

listen fe_main

 bind *:443 ssl crt /path/to/cert.pem

 bind *:80

 server local

 ↪ unix:/var/run/hapee-1.9/ssl_handoff.sock

 ↪ send-proxy-v2

frontend fe_secondary

 bind unix:/var/run/hapee-1.9/ssl_handoff.sock

 ↪ accept-proxy process 1

Stick tables, use_backend,

default_backend...

The first proxy terminates TLS and passes traffic to a single
server listed as server local
unix:/var/run/hapee-1.9/ssl_handoff.sock

send-proxy-v2. Then you add another frontend with bind
unix:/var/run/hapee-1.9/ssl_handoff.sock

accept-proxy process 1 in it. Inside this frontend you can
have all of your stick table and statistics collection without
issue. Since TLS termination usually takes most of the CPU
time, it’s highly unusual to need more than one process for
the backend work.

The HAProxy Guide to Multi-Layer Security 51

peers
Now that we’ve covered how to use stick tables, something
to consider is setups that utilize HAProxy in active-active
clusters, where a new connection from a client may end up at
one of multiple HAProxy servers, such as by Route Health
Injection or Amazon Elastic Load Balancer. One server has all
of the stick table entries, but the other node has its own set of
stick table definitions. To solve that problem you can add a
peers section to the top of your configuration:

peers mypeers

 peer centos7vert 192.168.122.64:10000

 peer shorepoint 192.168.122.1:10000

Then change your stick table definition to include a peers
argument:

stick-table type string len 32 size 100k expire

30m

 ↪ peers mypeers

At least one of the peers needs to have a name that matches
the server’s host name or you must include a setenv
hostname line in the global section of the configuration to
inform HAProxy what it should see the host name as.

Now the two servers will exchange stick table entries; but
there is a downside: they won’t sum their individual counters,

The HAProxy Guide to Multi-Layer Security 52

so http_req_rate on one will overwrite the value on the
other, rather than both seeing a sum of the two.

Enter the Stick Table Aggregator. This is a feature of
HAProxy Enterprise that watches for values coming in over
the peers protocol, adds the values together, then returns the
combined result back to each of the HAProxy instances. The
benefit of this is the ability to associate events that you
wouldn’t be able to otherwise, since the data resides on two
or more different nodes.

For example, in an active-active cluster of HAProxy load
balancers, an attacker will be hitting both instances. If you
aren’t combining the data, you’re only seeing half of the
picture. Getting an accurate representation of the state of
your nodes is important to detecting and stopping attacks.
Here’s a representation of how the aggregator allows peers
to exchange information:

The HAProxy Guide to Multi-Layer Security 53

Check out our webinar DDoS Attack and Bot Protection
with HAProxy Enterprise (bit.ly/2TzWo8I) for a full example
of using the Stick Table Aggregator.

Conclusion
In this chapter, you learned about HAProxy’s in-memory
storage mechanism, stick tables, that allow you to track client
activities across requests, enable server persistence, and
collect real-time metrics.

The HAProxy Guide to Multi-Layer Security 54

Introduction to
HAProxy Maps

Dictionaries. Hashes. Associative arrays. Can you imagine

life without these wonderful key-value data structures? The
mad, dystopian world it would be? They’re just sort of there
when needed: a trusty tool, never too far out of reach.

So maybe you’re not entirely shocked that they’re counted
among the HAProxy load balancer’s extensive feature set.
They’re called maps and are built-in and ready to roll. What
you’re probably not expecting are the imaginative tasks that
you can tackle with them. Want to set up blue-green
deployments? Maybe you’d like to set up rate limits by URL
path? How about just dynamically switching which backend
servers are used for a domain? It’s all done with maps!

In this chapter, you’ll learn how to create a map file, store it
on your system, reference it in your HAProxy configuration,
and update it in real time. You’ll also see some useful
scenarios in which to put your new knowledge to good use.

The HAProxy Guide to Multi-Layer Security 55

The Map File
Before considering the fascinating things you can do with a
map file, let’s wrap our minds around what a map file is.
Everything starts by creating a map file. Fire up your favorite
text editor and create a file named hosts.map. Then add the
following lines to it:

A comment begins with a hash sign and must

be on a new line

static.example.com be_static

www.example.com be_static

Empty lines are okay

example.com be_static

api.example.com be_api

A few things to note about the structure of this file:

● It’s plain text
● A key begins each line (e.g. static.example.com)
● A value comes after a key, separated by at least one

space (e.g. be_static)
● Empty lines and extra whitespace between words are

ignored
● Comments must begin with a hash sign and must be

on their own line

The HAProxy Guide to Multi-Layer Security 56

A map file stores key-value pairs. HAProxy uses them as a
lookup table, such as to find out which backend to route a
client to based on the value of the Host header. The benefit of
storing this association in a file rather than in the HAProxy
configuration itself is the ability to change those values
dynamically.

Next, transfer this file to a server where you have an instance
of HAProxy that you don’t mind experimenting with and
place it into a directory of your choice. In these examples,
since we’re using HAProxy Enterprise, we’ll store it under
/etc/hapee-1.9/maps. Map files are loaded by HAProxy when
it starts, although, as you’ll see, they can be modified during
runtime without a reload.

Did you know? Map files are loaded into an Elastic Binary
Tree format so you can look up a value from a map file
containing millions of items without a noticeable performance
impact.

Map Converters
To give you an idea of what you can do with map files, let’s
look at using one to find the correct backend pool of servers
where users should be sent. You will use the hosts.map file
that you created previously to look up which backend should
be used based on a given domain name. Begin by editing
your haproxy.cfg file. As you will see, you will add a map
converter that reads the map file and returns a backend
name.

The HAProxy Guide to Multi-Layer Security 57

A converter is a directive placed into your HAProxy
configuration that takes in an input and returns an associated
output. There are various types of converters. For example,
you might use the lower converter to change a given string
to lowercase or url_dec to URL decode it. In the following
example, the input is a string literal example.com and the map
converter looks up that key in the map file, hosts.map.

frontend fe_main

 bind :80

 use_backend %[str(example.com),

 ↪ map(/etc/hapee-1.9/maps/hosts.map)]

The first row in hosts.map that has example.com as a key will
have its value returned. Notice how the input,
str(example.com), begins the expression and is separated
from the converter with a comma.

When this expression is evaluated at runtime, it will be
converted to the line use_backend be_static, which directs
requests to the be_static pool of servers. Of course, rather
than passing in a hardcoded string like example.com, you can
send in the value of an HTTP header or a URL parameter. The
next example uses the value of the Host header as the input.

use_backend

 %[req.hdr(host),lower,

 ↪ map(/etc/hapee-1.9/maps/hosts.map,

 ↪ be_static)]

The HAProxy Guide to Multi-Layer Security 58

The map converter takes up to two arguments. The first is the
path to your map file. The second, optional argument declares
a default value that will be used if no matching key is found.
So, in this case, if there’s no match, be_static will be used. If
the input matches multiple items in the map file, HAProxy will
return the first one.

The map converter looks for an exact match in the file, but
there are a few variants that provide opportunities for a
partial match. The most commonly used are summarized
here:

map_beg Looks for entries in the map file that match
the beginning of the input (e.g. an input of
“abcd” would match “a” in the file).

map_end Looks for entries in the map file that match
the end of the input (e.g. an input of “abcd”
would match “d” in the file). Unlike the other
match modes, this doesn’t perform ebtree
lookups and instead checks each line.

map_sub Looks for entries in the map file that make up
a substring of the sample (e.g. an input of
“abcd” would match “ab” or “c” in the file).
Unlike the other match modes, this doesn’t
perform ebtree lookups and instead checks
each line.

map_ip This takes the input as an IP address and
looks it up in the map. If the map has masks
(such as 192.168.0.0/16) in it then any IP in
the range will match it.This is the default if the
input type is an IP address.

The HAProxy Guide to Multi-Layer Security 59

map_reg This reads the samples in the map as regular
expressions and will match if the regular
expression matches. Unlike the other match
modes, this doesn’t perform ebtree lookups
and instead checks each line.

map_str An alias for map. This takes a string as an
input, matches on the whole key, and returns
a value as a string.

Modifying the Values

Much of the value of map files comes from your ability to
modify them dynamically. This allows you to, for example,
change the flow of traffic from one backend to another, such
as for maintenance.

There are four ways to change the value that we get back
from a map file. First, you can change the values by editing
the file directly. This is a simple way to accomplish the task,
but does require a reload of HAProxy. This is a good choice if

The HAProxy Guide to Multi-Layer Security 60

you’re using a configuration management tool like Puppet or
Ansible.

The second way is provided with HAProxy Enterprise via the
lb-update module, which you’ll really appreciate if you’re
running a cluster of load balancers. It allows you to update
maps within multiple instances of HAProxy at once by
watching a map file hosted at a URL at a defined interval.

A third way to edit the file’s contents is by using the Runtime
API. The API provides all of the necessary CRUD operations
for creating, removing, updating, and deleting rows from the
map in memory, without needing to reload HAProxy. There’s
also a simple technique for saving your changes to disk,
which you’ll see later in this chapter.

A fourth way is with the http-request set-map directive in
your HAProxy configuration file. This gives you the
opportunity to update map entries based on URL parameters
in the request. It’s easy to turn this into a convenient
HTTP-based interface for making map file changes from a
remote client.

In the next few sections, you’ll get some guidance on how to
use these techniques.

Editing the File Directly
A straightforward way to change the values you get back
from your map file is to change the file itself. Open the file
and make any modifications you need: adding rows, removing
others, changing the values of existing rows. However, know
that HAProxy only reads the file when it’s starting up and

The HAProxy Guide to Multi-Layer Security 61

then loads it into memory. Refreshing the file, then, means
reloading HAProxy.

Thanks to hitless reloads introduced in HAProxy Enterprise
1.8r1 and HAProxy 1.8, you can trigger a reload without
dropping active connections. Read our blog post Hitless
Reloads with HAProxy – HOWTO (http://bit.ly/2Uz0PAu)
for an explanation on how to use this feature.

This approach will work with configuration management
tools like Puppet, which allow you to distribute changes to
your servers at a set interval. Be sure to reload HAProxy to
pick up the changes.

Editing With the lb-update Module
Although configuration management tools allow you to
update the servers in your cluster, they can be a heavy
solution that requires administration. An alternative is using
the lb-update module to keep each replica of HAProxy within
your cluster in sync. The lb-update module instructs
HAProxy Enterprise to retrieve the contents of the map file
from a URL at a defined interval. The module will
automatically check for updates as frequently as configured.
This is especially useful when there are a lot of processes
and/or servers in a cluster that need the updated files.

Did you know? The lb-update module can also be used to
synchronize TLS ticket keys.

The HAProxy Guide to Multi-Layer Security 62

Below is a sample of a dynamic-update section that
manages updating the hosts.map file from a URL. You’d add
an update directive for each map file that you want to watch.

dynamic-update update id

 ↪ /etc/hapee-1.9/maps/sample.map

 ↪ url http://10.0.0.1/sample.map delay 300s

See the HAProxy Enterprise documentation for detailed
usage instructions or contact us to learn more.

Editing With the Runtime API
There are several API methods available for updating an
existing map file. The table below summarizes them.

API method Description

show map Lists available map files or displays a map
file’s contents.

get map Reports the keys and values matching a
given input.

set map Modifies a map entry.

add map Adds a map entry.

del map Deletes a map entry.

clear map Deletes all entries from a map file.

The HAProxy Guide to Multi-Layer Security 63

Without any parameters, show map lists the map files that are
loaded into memory. If you give it the path to a particular file,
it will display its contents. In the following example, we use it
to display the key-value pairs inside hosts.map.

root@server1:~$ echo "show map

 ↪ /etc/hapee-1.9/maps/hosts.map" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

0x1605c10 static.example.com be_static

0x1605c50 www.example.com be_static

0x1605c90 example.com be_static

0x1605cd0 api.example.com be_api

The first column is the location of the entry and is typically
ignored. The second column is the key to be matched and the
third is the value. We can easily add and remove entries via
the Runtime API. To remove an entry from the map file, use
del map. Note that this only removes it from memory and not
from the actual file.

root@server1:~$ echo "del map

 ↪ /etc/hapee-1.9/hosts.map static.example.com" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

You can also delete all entries with clear map:

The HAProxy Guide to Multi-Layer Security 64

root@server1:~$ echo "clear map

 ↪ /etc/hapee-1.9/maps/hosts.map" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

Add a new key and value with add map:

root@server1:~$ echo "add map

 ↪ /etc/hapee-1.9/maps/hosts.map

 ↪ foo.example.com be_bar" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

Change an existing entry with set map:

root@server1:~$ echo "set map

 ↪ /etc/hapee-1.9/maps/hosts.map

 ↪ foo.example.com be_baz" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

Using show map, we can get the contents of the file, filter it to
only the second and third columns with awk, and then save
the in-memory representation back to disk:

root@server1:~$ echo "show map

 ↪ /etc/hapee-1.9/maps/hosts.map" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock |

 ↪ awk '{print $2" "$3}' >

 ↪ /etc/hapee-1.9/maps/hosts.map

The HAProxy Guide to Multi-Layer Security 65

Actions can also be chained together with semicolons, which
makes it easy to script changes and save the result:

root@server1:~$ echo "clear map

 ↪ /etc/hapee-1.9/maps/hosts.map;

 ↪ add map /etc/hapee-1.9/maps/hosts.map

 ↪ bar.example.com be_foo;

 ↪ add map /etc/hapee-1.9/maps/hosts.map

 ↪ foo.example.com be_baz" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

Did you know? If you are forking HAProxy with multiple
processes via nbproc, you’ll want to configure one socket per
process and then run a loop to update each process
individually. This is not an issue when using multithreading.

Editing With http-request set-map
Suppose you didn’t want to go about editing files by hand or
using the Runtime API. Instead, you wanted to be able to
make an HTTP request with a certain URL parameter and
have that update your map file. In that case, http-request
set-map is your go-to.

This allows the use of fetches, converters, and ACLs to
decide when and how to change a map during runtime. In
addition to set-map, there’s also del-map, which allows you
to remove map entries in the same way. As with the runtime
API, these changes also only apply to the process that the
request ends up on.

The HAProxy Guide to Multi-Layer Security 66

Pass the map file’s path to set-map and follow it with a key
and value, separated by spaces, that you want to add or
update. Both the key and value support the log-format
notation, so you can specify them as plain strings or use
fetches and converters. For example, to add a new entry to
the hosts.map file, but only if the source address falls within
the 192.168.122.0/24 range, you can use a configuration like
this:

frontend fe_main

 bind :80

 acl in_network src 192.168.122.0/24

 acl is_map_add path_beg /map/add

 http-request

 ↪ set-map(/etc/hapee-1.9/maps/hosts.map)

 ↪ %[url_param(domain)] %[url_param(backend)]

 ↪ if is_map_add in_network

 http-request deny deny_status 200

 ↪ if { path_beg /map/ }

 use_backend %[req.hdr(host),lower,

 ↪ map(/etc/hapee-1.9/maps/hosts.map)]

This will allow you to make web requests such as
http://192.168.122.64/map/add?domain=example.com&bac
kend=be_static for a quick and easy way to update your
maps. If the entry already exists, it will be updated. Notice
that you can use http-request deny deny_status 200 to
prevent the request from going to your backend servers.

The HAProxy Guide to Multi-Layer Security 67

The http-request del-map command is followed by the
key to remove from the map file.

acl is_map_del path_beg /map/delete

http-request

del-map(/etc/hapee-1.9/maps/hosts.map)

 ↪ %[url_param(domain)] if is_map_del in_network

Using the show map technique you saw earlier, you might
schedule a cron job to save your map files every few minutes.
However, if you need to replicate these changes across
multiple instances of HAProxy, using one of the other
approaches will be a better bet.

Did you know? Another way to control when to set or delete
an entry is to check the method of the request and then set
an entry if it’s POST or PUT. If it’s DELETE, delete an entry.

Putting It Into Practice
We’ve seen how to use the Host header to look up a key in a
map file and choose a backend to use. Let’s see some other
ways to use maps.

A Blue-Green Deployment
Suppose you wanted to implement a blue-green deployment
wherein you’re able to deploy a new release of your web
application onto a set of staging servers and then swap them

The HAProxy Guide to Multi-Layer Security 68

with a set of production servers. You could create a file called
bluegreen.map and add a single entry:

active be_blue

In this scenario, the be_blue backend contains your set of
currently active, production servers. Here is your HAProxy
configuration file:

frontend fe_main

 bind :80

 use_backend %[str(active),

 ↪ map(/etc/hapee-1.9/maps/bluegreen.map)]

backend be_blue

 server server1 10.0.0.3:80 check

 server server2 10.0.0.4:80 check

backend be_green

 server server1 10.0.0.5:80 check

 server server2 10.0.0.6:80 check

After you deploy a new version of your application to the
be_green servers and test it, you can use the Runtime API to
swap the active be_blue servers with the be_green servers,
causing your be_green servers to become active in
production.

The HAProxy Guide to Multi-Layer Security 69

root@server1:~$ echo

 ↪ "set map /etc/hapee-1.9/maps/bluegreen.map

 ↪ active be_green" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

Now your traffic will be directed away from your be_blue
servers and to your be_green servers. This, unlike a rolling
deployment, ensures that all of your users are migrated to the
new version of your application at the same time.

Rate Limiting by URL Path
For this example, you will set rate limits for your website.
Using a map file lets you set different limits for different
URLs. For example, URLs that begin with /api/routeA may
allow a higher request rate than those that begin with
/api/routeB.

Add a map file called rates.map and add the following
entries:

/api/routeA 40

/api/routeB 20

Consider the following frontend, wherein the current
request rate for each client is measured over 10 seconds. A
URL path like /api/routeA/some_function would allow up to
four requests per second (40 requests / 10 seconds = 4 rps).

The HAProxy Guide to Multi-Layer Security 70

frontend api_gateway

 bind :80

 default_backend api_servers

Set up stick table to track request rates

stick-table type binary len 8 size 1m expire 10s

 ↪ store http_req_rate(10s)

Track client by base32+src

(Host header + URL path + src IP)

http-request track-sc0 base32+sr

Check map file to get rate limit for path

http-request set-var(req.rate_limit) path,

 ↪ map_beg(/etc/hapee-1.9/maps/rates.map)

Client's request rate is tracked

http-request set-var(req.request_rate) base32+src,

 ↪ table_http_req_rate(api_gateway)

Subtract the current request rate from the limit

If less than zero, set rate_abuse to true

acl rate_abuse var(req.rate_limit),

 ↪ sub(req.request_rate) lt 0

Deny if rate abuse

http-request deny deny_status 429 if rate_abuse

Here, the stick-table definition records client request rates
over ten seconds. Note that we are tracking clients using the
base32+src fetch method, which is a combination of the
Host header, URL path, and source IP address. This allows us

The HAProxy Guide to Multi-Layer Security 71

to track each client’s request rate on a per-path basis. The
base32+src value is stored in the stick table as binary data.

Then, two variables are set with http-request set-var.
The first, req.rate_limit, is set to the predefined rate limit for
the current path from the rates.map file. The second,
req.request_rate, is set to the client’s current request rate.

The ACL rate_abuse does a calculation to see whether the
client’s request rate is higher than the limit for this path. It
does this by subtracting the request rate from the request
limit and checking whether the difference is less than zero. If
it is, the http-request deny directive responds with 429
Too Many Requests.

Conclusion
Now that you’ve seen a few of the possibilities, consider
reaching for your trusty tool, maps, the next time you run into
a problem where it can help.

The HAProxy Guide to Multi-Layer Security 72

Application-Layer
DDoS Attack
Protection

Put any website or application up these days and you’re

guaranteed to be the target of a wide variety of probes and
attacks. Your website is a boat that must constantly weather
the storm of various threats, including distributed
denial-of-service (DDoS) attacks, malicious bots, and
intrusion attempts. Over the years, HAProxy has evolved to
living life in these perilous waters through the development of
flexible building blocks that can be combined to mitigate
nearly any type of threat. These building blocks include
high-performance ACLs and maps, real-time tracking with
stick tables, a performant SSL/TLS stack, a WAF, and much
more. Even with all these added capabilities, it maintains the
best-in-class performance that it’s known for.

The spectrum of companies benefiting from HAProxy’s
advanced security capabilities range from small
mom-and-pop shops to large enterprises, managed hosting
companies and load balancer-as-a-service platforms serving

The HAProxy Guide to Multi-Layer Security 73

millions of requests per second. Top websites include GitHub,
which uses HAProxy to protect its network from
application-layer DDoS attacks, and StackExchange, which
uses it to detect and protect against bot threats. Furthermore,
Booking.com chose HAProxy as a core component in its edge
infrastructure for its superior performance after comparing it
with other software load balancers on the market.

In this chapter, we’ll demonstrate how the HAProxy load
balancer protects you from application-layer DDoS attacks
that could, otherwise, render your web application dead in
the water, unreachable by ordinary users. In particular, we’ll
discuss HTTP floods. An HTTP flood operates at the
application layer and entails being immersed with web
requests, wherein the attacker hopes to overwhelm your
application’s capacity to respond.

HTTP Flood
The danger of HTTP flood attacks is that they can be carried
out by just about anyone. They don’t require a large botnet
and tools for orchestrating the attack are plentiful. This
accessibility makes it especially important that you have
defenses in place to repel these assaults.

These attacks can come in a few different forms, but the most
commonly seen pattern consists of attackers requesting one
or more of your website’s URLs with the highest frequency
they are able to achieve. A shotgun approach will be to
request random URLs, whereas more sophisticated attackers
will profile your site first, looking for slow and uncached

The HAProxy Guide to Multi-Layer Security 74

resources that are more vulnerable. For example, they may
target search pages.

In order to evade detection for longer, the attack may consist
of many different source IP addresses. It may be carried out
by bots or by groups of real users working in unison to bring
down your site. That was the case with the Low Orbit Ion
Cannon (LOIC) and High Orbit Ion Cannon (HOIC) attacks
carried out by the hacktivist collective Anonymous. The
seemingly widespread range of source IPs is what
characterizes the distributed nature of the attack.

HAProxy comes with features for mitigating HTTP floods and
will play a vital part in your overall defense strategy. In this
chapter, we will be using HAProxy Enterprise because of its
additional security features, which we’ll talk about later.

Manning the Turrets
The ideal place to stop an HTTP flood is at the edge of your
network. Stopping threats here protects your upstream web
applications by minimizing the traffic and system load that
could impact them, as well as other sites and services running
on those servers. It also prevents unnecessary confusion
during attack identification by drawing a clear frontline to the
battle.

The HAProxy Guide to Multi-Layer Security 75

The HAProxy load balancer receives requests from the
Internet and passes them to your web servers. This lets you
guard the perimeter. The other network devices that sit
between HAProxy and the Internet, including routers and
firewalls, are typically operating at too low a level to allow for
request inspection.

Did you know? ALOHA, the HAProxy plug-and-play
appliance, can protect you from low-level, protocol-based
attacks, such as SYN floods, at line rate with our mitigation
solution called PacketShield. PacketShield is powered by
NDIV, an open-source network traffic processing framework
that we’ve been working on since 2013. We have since been
working closely with the XDP team to bring some NDIV
features to XDP and make NDIV work on top of XDP.

With HAProxy, you have two methods that are very effective
at classifying malicious requests. The first is to monitor the
rate at which a user is making requests. The second is to flag

The HAProxy Guide to Multi-Layer Security 76

HTTP requests that have signatures you wouldn’t expect to
see from ordinary users. For the best results, you should
combine the two methods. Setting request rate limits lets you
block clients that access your website’s resources too
frequently, while denying requests that contain anomalous
data narrows the field of possible attackers.

Setting Request Rate
Limits
Tracking user activities across requests requires in-memory
data storage that can identify returning clients and correlate
their actions. This is key to setting rate-limiting
thresholds—being able to track how many requests someone
is making. HAProxy enables you to do this through an
extremely flexible and high-performance data storage called
stick tables, a feature that is unique to HAProxy.

Stick tables provide a generic key-value store and can be
used to track various counters associated with each client.
The key can be based on anything found within the request.
Typically, it will be the user’s IP address, although it can also
be something more specific like the IP+UserAgent.
Commonly tracked values are the request count and request
rate over a period of time.

Stick tables were developed in collaboration with
StackExchange, the network of Q&A communities that
includes Stack Overflow, who initially approached HAProxy in
2010 about implementing rate limiting based on traffic

The HAProxy Guide to Multi-Layer Security 77

patterns. Stick tables are an extremely mature and proven
technology within HAProxy, enabling many of its advanced
features.

Defining the Storage
Create a stick table by adding a stick-table directive to a
backend or frontend. In the following example, we use a
placeholder backend named per_ip_rates. Dedicating a
backend to holding just a stick-table definition allows you
to reference it in multiple places throughout your
configuration.

Consider the following example:

backend per_ip_rates

 stick-table type ip size 1m expire 10m

 ↪ store http_req_rate(10s)

This sets up the storage that will keep track of your clients by
their IP addresses. It initializes a counter that tracks each
user’s request rate. Begin tracking a client by adding an
http-request track-sc0 directive to a frontend section,
as shown:

frontend fe_mywebsite

 bind *:80

 http-request track-sc0 src table per_ip_rates

With this configuration in place, all clients visiting your
website through HAProxy via the fe_mywebsite frontend will

The HAProxy Guide to Multi-Layer Security 78

be stored in the per_ip_rates stick table. All of the counters
specified in the stick table definition will be automatically
maintained and updated by HAProxy.

Next, let’s see how to put this data to good use.

Limiting Request Rates
Let’s say that you wanted to block any client making more
than 10 requests per second. The http_req_rate(10s)
counter that you added will report the number of requests
over 10 seconds. So, to cap requests at 10 per second, set
the limit to 100.

In the following example, we add the http-request deny
directive to reject clients that have gone over the threshold:

frontend fe_mywebsite

 bind *:80

 http-request track-sc0 src table per_ip_rates

 http-request deny deny_status 429

 ↪ if { sc_http_req_rate(0) gt 100 }

This rule instructs HAProxy to deny all requests coming from
IP addresses whose stick table counters are showing a
request rate of over 10 per second. When any IP address
exceeds that limit, it will receive an HTTP 429 Too Many
Requests response and the request won’t be passed to any
HAProxy backend server.

These requests will be easy to spot in the HAProxy access
log, as they will have a termination state of PR–, which means

The HAProxy Guide to Multi-Layer Security 79

that the session was aborted because of a connection limit
enforcement:

Feb 8 17:15:07 localhost hapee-lb[19738]:

192.168.1.2:49528 [08/Feb/2018:17:15:07.182]

fe_main fe_main/<NOSRV> 0/-1/-1/-1/0 429 188 - -

PR-- 0/0/0/0/0 0/0 "GET / HTTP/1.1"

If you’d like to define rate limit thresholds on a per URI basis,
you can do so by adding a map file that pairs each rate limit
with a URL path. See the previous chapter, Introduction to
HAProxy Maps for an example.

Maybe you’d like to rate limit POST requests only? It’s simple
to do by adding a statement that checks the built-in ACL,
METH_POST.

http-request track-sc0 src table per_ip_rates

 ↪ if METH_POST http-request deny deny_status 429

 ↪ if { sc_http_req_rate(0) gt 100 }

You can also tarpit abusers so that their requests are rejected
with a HTTP 500 status code with a configurable delay. The
duration of the delay is set with the timeout tarpit
directive. Here, you’re delaying any response for five seconds:

timeout tarpit 5s

http-request tarpit if { sc_http_req_rate(0)

 ↪ gt 100 }

The HAProxy Guide to Multi-Layer Security 80

When the timeout expires, the response that the client gets
back after being tarpitted is 500 Internal Server Error, making
it more likely that they’ll think that their assault is working.

Slowloris Attacks
Before getting into our second point about DDoS detection,
identifying odd patterns among users, let’s take a quick look
at another type of application-layer attack: Slowloris.
Slowloris involves an attacker making requests very slowly to
tie up your connection slots. Contrary to other types of DDoS,
the volume of requests needed to make this attack successful
is fairly low. However, as each request only sends one byte
every few seconds, they can tie up many request slots for
several minutes.

An HAProxy load balancer can hold a greater number of
connections open without slowing down than most web
servers. As such, the first step towards defending against
Slowloris attacks is setting maxconn values. First, set a
maxconn in the global section that leaves enough headroom
so that your server won’t run out of memory even if all the
connections are filled. Then inside the frontend or a
defaults section, set a maxconn value slightly under that so
that if an attack saturates one frontend, the others can still
operate.

Next, add two lines to your defaults section:

The HAProxy Guide to Multi-Layer Security 81

timeout http-request 5s

option http-buffer-request

The first line causes HAProxy to respond to any clients that
spend more than five seconds from the first byte of the
request to the last with an HTTP 408 Request Timeout error.
Normally, this only applies to the HTTP request and its
headers and doesn’t include the body of the request.
However, with option http-buffer-request, HAProxy will
store the request body in a buffer and apply the
http-request timeout to it.

Blocking Requests by
Static Characteristics
You’ve seen how to block requests that surpass a maximum
number of HTTP requests. The other way to identify and stop
malicious behavior is by monitoring for messages that match
a pattern. Patterns are set in HAProxy using access control
lists (ACLs).

Let’s see some useful ACLs for stopping DDoS attacks.

Using ACLs to Block Requests
A number of attacks use HTTP/1.0 as the protocol version
because that’s the version supported by some bots. It’s easy
to block these requests using the built-in ACL, HTTP_1.0:

The HAProxy Guide to Multi-Layer Security 82

http-request deny if HTTP_1.0

You can also reject requests that have non-browser
User-Agent headers, such as curl.

http-request deny if { req.hdr(user-agent) -i -m

 ↪ sub curl }

This line will deny the request if the -m sub part of the
User-Agent request header contains the string curl anywhere
in it. The -i makes it case-insensitive. You might also check
for other strings such as phantomjs and slimerjs, which are
two scriptable, headless browsers that could be used to
automate an attack.

http-request deny if { req.hdr(user-agent) -i -m

 ↪ sub curl phantomjs slimerjs }

If you have many strings that you’re checking, consider
saving them to a file—one string per line—and referencing it
like this:

http-request deny if { req.hdr(user-agent) -i -m

 ↪ sub -f /etc/hapee-1.9/badagents.acl }

At other times, an attacker who is using an automated tool
will send requests that don’t contain a User-Agent header at
all. These can be denied too, as in the following example:

The HAProxy Guide to Multi-Layer Security 83

http-request deny unless { req.hdr(user-agent)

 ↪ -m found }

Even more common is for attackers to randomize the
User-Agent strings that they send in order to evade detection
for longer. Oftentimes, these come from a list of genuine
values that a true browser would use and make it harder to
identify malicious users.

This is where the HAProxy Enterprise Fingerprint Module
comes in handy. It uniquely identifies clients across requests,
even when they change their User-Agent string. It works by
triangulating many data points about a client to form a
signature specific to them. Using this information, you can
then ID and dynamically block the abusers.

Blacklisting and Greylisting
Another characteristic that you might use to filter out
potentially dangerous traffic is the client’s source IP address.
Whether intentionally or unintentionally, China seems to be
the origin of much DDoS traffic. You may decide to blacklist
all IPs coming from a particular country by researching which
IP blocks are assigned to it and denying them en masse.

Use the src fetch method to get a client’s source IP address.
Then, compare it to a file containing all of the IP address
ranges that you wish to block.

http-request deny if { src -f

 ↪ /etc/hapee-1.9/blacklist.acl }

The HAProxy Guide to Multi-Layer Security 84

Your blacklist.acl file might look like this:

1.0.1.0/2 4

1.0.2.0/2 3

1.0.8.0/2 1

1.0.32.0/1 9

1.1.0.0/2 4

1.1.2.0/2 3

1.1.4.0/2 2

etc.

To streamline this, you can use a GeoIP database like
MaxMind or Digital Element. Read our blog post, Using GeoIP
Database within HAProxy (http://bit.ly/2D5oqBU) to see
how to set this up. Alternatively, these lookups can happen
directly from within HAProxy Enterprise using a native
module that allows for live updates of the data and doesn’t
require extra scripts to translate to map files. The native
modules also result in less memory consumption in cases
where lookups need to be granular, for example, on a city
basis.

If you don’t like the idea of banning entire ranges of IP
addresses, you might take a more lenient approach and only
greylist them. Greylisting allows those clients to access your
website, but enforces stricter rate limits for them. The
following example sets a stricter rate limit for clients that
have IP addresses listed in greylist.acl:

The HAProxy Guide to Multi-Layer Security 85

http-request deny if { src -f
 ↪ /etc/hapee-1.9/greylist.acl }
 ↪ { sc_http_req_rate(0) gt 5 }

If you are operating two or more instances of HAProxy for
redundancy, you’ll want to make sure that each one has the
list of the IP addresses that you’ve blacklisted and that they
are each updated whenever you make a change. Here’s a
place where using HAProxy Enterprise gives you an
advantage. By using a module called lb-update, you can host
your ACL file at a URL and have each HAProxy instance fetch
updates at a defined interval.

In the next example, we’re using lb-update to check for
updates every 60 seconds:

dynamic-update

 update id /etc/hapee-1.9/blacklist.acl
 ↪ url https://192.168.122.1/blacklist.acl
 ↪ delay 60s

Protecting TCP
(non-HTTP) Services
So far, we’ve primarily covered protecting web servers.
However, HAProxy can also help in protecting other
TCP-based services such as SSH, SMTP, and FTP. The first
step is to set up a stick-table that tracks conn_cur and
conn_rate:

The HAProxy Guide to Multi-Layer Security 86

frontend per_ip_connections

 stick-table type ip size 1m expire 1m
 ↪ store conn_cur,conn_rate(1m)

Next, create or modify a frontend to use this table by adding
track and reject rules:

frontend fe_smtp

 mode tcp

 bind :25

 option tcplog

 timeout client 1m

 tcp-request content track-sc0 src
 ↪ table per_ip_connections
 ↪ tcp-request content reject
 ↪ if { sc_conn_cur(0) gt 1 } ||
 ↪ { sc_conn_rate(0) gt 5 }
 default_backend be_smtp

With the usual backend:

backend be_smtp

 mode tcp

 timeout server 1m

 option tcp-check

server smtp1 162.216.18.221:25 maxconn 50
check

Now, each client can establish one SMTP connection at a
time. If they try to open a second one while the first is still
open, the connection will be immediately closed again.

The HAProxy Guide to Multi-Layer Security 87

Delaying Connections
With e-mail and other server-speaks-first protocols (where
the server sends a message as soon as a client connects
instead of waiting for the client to say something, as with
HTTP) we can delay connections as well by adding the
following after the rules we added to block:

tcp-request inspect-delay 10s

tcp-request content accept if { sc_conn_rate(0)

 ↪ lt 2 }

tcp-request content reject if { req_len gt 0 }

This will immediately connect any client that has made only
one connection within the last minute. A threshold of less
than two is used so that we’re able to accept one connection,
but it also makes it easy to scale that threshold up. Other
connections from this client will be held in limbo for 10
seconds, unless the client sends data down that second pipe,
which we check with req_len. In that case, HAProxy will
close the connection immediately without bothering the
backend.

This type of trick is useful against spam bots or SSH
bruteforce bots, which will often launch right into their attack
without waiting for the banner. With this, if they do launch
right in, they get denied, and if they don’t, they had to hold
the connection in memory for an additional 10 seconds. If
they open more connections to get around that rate limit, the
conn_cur limits from the previous section will stop them.

The HAProxy Guide to Multi-Layer Security 88

The Stick Table
Aggregator
Using active-active HAProxy load balancers in front of your
websites increases your redundancy, protecting you in case
one load balancer goes offline. It also provides extra capacity
when weathering an application-based DDoS attack. You can
learn how to set it up by watching our on-demand webinar,
Building Highly Scalable ADC Clusters Using BGP
Equal-cost Multi-path Routing (http://bit.ly/2WGHr6v).

In a standard HAProxy Community configuration, each
individual instance of HAProxy only sees the requests coming
to it. It does not see the requests that are received by other
load balancer instances. This gives an attacker more time to
stay under the radar. If you’re using HAProxy Enterprise,
enabling the Stick Table Aggregator module solves this
problem. It allows HAProxy servers to aggregate all of their
request rates and statistics and make decisions based on the
sum of data.

The illustration below depicts how multiple load balancers
can be peered to share information. Note how by adding tiers
of stick table aggregators, you can collect data from many
instances of HAProxy. Contact us to learn how to set this up.

The HAProxy Guide to Multi-Layer Security 89

The reCAPTCHA and
Antibot Modules
HAProxy isn’t limited to just flat-out blocking a request.
Sometimes, you’ll deal with situations where things are less
certain: Is it a bot or is it a bunch of visitors that appear with
the same IP only because they are behind a NAT? More
adaptable responses are in order.

Using a Lower Priority Backend
If you want to allow suspicious requests to your site normally,
when loads are low, but restrict them when loads start
increasing (or dedicate a cheap VM to suspicious requests,
divert traffic to a static version of your site, etc), using another
backend can help. To do this, create a backend with the new
servers and then use a use_backend line to direct requests to
it:

use_backend be_website_bots if {
sc_http_req_rate(0)
 ↪ gt 100 }

This will typically go after the http-request deny rules,
which would have a higher threshold like 200, so that an
overly abusive bot will still get direct error responses, while
ones with a lower request rate can get the be_website_bots
backend instead. If returning errors even at the higher rates
concerns you, you can add { be_conn(be_website) gt

The HAProxy Guide to Multi-Layer Security 90

3000 } to only outright deny requests if there are more than
3,000 currently active connections to the backend.

Sending a Javascript Challenge
The HAProxy Enterprise Antibot module provides a way to
make clients generate a key to enter the site, which will help
identify individual users behind a NAT and seperate the
clients that support Javascript from the ones that don’t.

The Antibot module asks the client to solve a dynamically
generated math problem. It works off of the idea that many
automated DDoS bots aren’t able to parse JavaScript. Or, if
they are, doing so slows them down. Spending CPU time on
solving the puzzle often consumes an attacker’s resources
that they’re paying for by the minute and, frustrated, they will
often go elsewhere in search of an easier target.

View our on-demand webinar, DDoS Attack and Bot
Protection with HAProxy Enterprise (http://bit.ly/2TzWo8I),
to learn more and see a demo of the Antibot module in action.

Challenging a Visitor to Solve a
Captcha
The reCAPTCHA module presents the client with a Google
reCAPTCHA v2 challenge that a bot won’t be able to
complete. This is helpful for cases where a bot is taking
advantage of a full-fledged browser such as headless
Chrome or Selenium. This, like the Antibot module, weeds out
illegitimate users, either stopping them in their tracks or
slowing them down to the point where it’s unfavorable for
them to continue the assault.

The HAProxy Guide to Multi-Layer Security 91

Silently Dropping Requests
When your rules clearly indicate that a bot is a bot and it is
just generating too much traffic, the best thing to do is to try
and overload it.

In order to make requests, the bot needs to keep track of the
TCP connections, and normally so does HAProxy. Thus, both
are tied, except that HAProxy has to also answer other
visitors at the same time. With silent-drop HAProxy will
tell the kernel to forget about the connection and
conveniently forget to notify the client that it did so. Now,
HAProxy doesn’t need to track that connection. This leaves
the client waiting for a reply that will never come and it will
have to keep the connection in its memory, using one of its
source ports, until it times out. To do this, add http-request
silent-drop, like so:

http-request silent-drop if { sc_http_req_rate(0)
 ↪ gt 100 }

The main downside to this, presuming that the rules are set
such that no legitimate clients will get this treatment, is that
any stateful network devices (namely firewalls) will be
confused by this, as they too won’t get a notification that the
connection has closed. This will cause these devices to keep
track of connections that HAProxy is no longer thinking about
and, in addition, consume memory on the stateful firewall. Be
mindful of this if you are using such a device.

The HAProxy Guide to Multi-Layer Security 92

Conclusion
In this chapter, you’ve learned how to defend your websites
from application-layer attacks like HTTP floods and Slowloris
by using features built into HAProxy for rate limiting and
flagging suspicious clients. This safeguards your web servers
and prevents malicious traffic from entering your network.

HAProxy Enterprise will give you some must-have features
for aggregating stick table data and challenging suspicious
clients with either JavaScript or reCAPTCHA puzzles. These
extras will ensure that you’re getting the full picture of your
traffic and that regular users aren’t locked out by false
positives.

The HAProxy Guide to Multi-Layer Security 93

Bot Protection with
HAProxy

It is estimated that bots make up nearly half the traffic on

the Internet. When we say bot, we’re talking about a
computer program that automates a mundane task. Typical
bot activities include crawling websites for indexing, such as
how Googlebot finds and catalogues your web pages. Or, you
might sign up for services that watch for cheap airline tickets
or aggregate price lists to show you the best deal. These
types of bots are generally seen as beneficial.

Unfortunately, a large portion of bots are used for malicious
reasons. Their intentions include web scraping, spamming,
request flooding, brute forcing, and vulnerability scanning.
For example, bots may scrape your price lists so that
competitors can consistently undercut you or build a
competitive solution using your data. Or they may try to
locate forums and comment sections where they can post
spam. At other times, they’re scanning your site looking for
security weaknesses.

The HAProxy Guide to Multi-Layer Security 94

HAProxy has best-in-class defense capabilities for detecting
and protecting against many types of unwanted bot traffic. Its
unique ACL, map, and stick table systems, as well as its
flexible configuration language, are the building blocks that
allow you to identify any type of bot behavior and neutralize
it. Furthermore, HAProxy is well known for maintaining its
high performance and efficiency while performing these
complex tasks. For those reasons, companies like
StackExchange have used HAProxy as a key component in
their security strategy.

In this chapter, you’ll learn how to create an HAProxy
configuration for bot protection. As you’ll see, bots typically
exhibit unique behavior and catching them is a matter of
recognizing the patterns. You’ll also learn how to whitelist
good bots.

HAProxy Load Balancer
To create an HAProxy configuration for bot protection, you’ll
first need to install HAProxy and place it in front of your
application servers. All traffic is going to be routed through it
so that client patterns can be identified. Then, proper
thresholds can be determined and response policies can be
implemented.

In this chapter, we’ll look at how many unique pages a client
is visiting within a period of time and determine whether this
behavior is normal or not. If it crosses the predetermined
threshold, we’ll take action at the edge before it gets any
further. We’ll also go beyond that and see how to detect and

The HAProxy Guide to Multi-Layer Security 95

block bots that try to brute-force your login screen and bots
that scan for vulnerabilities.

Bot Protection Strategy
Bots can be spotted because they exhibit non-human
behavior. Let’s look at a specific behavior: web scraping. In
that case, bots often browse a lot of unique pages very
quickly in order to find the content or types of pages they’re
looking for. A visitor that’s requesting dozens of unique pages
per second is probably not human.

Our strategy is to set up the HAProxy load balancer to
observe the number of requests each client is making. Then,
we’ll check how many of those requests are for pages that
the client is visiting for the first time. Remember, web
scraping bots want to scan through many pages in a short
time. If the rate at which they’re requesting new pages is
above a threshold, we’ll flag that user and either deny their
requests or route them to a different backend.

You’ll want to avoid blocking good bots like Googlebot
though. So, you’ll see how to define whitelists that permit
certain IP addresses through.

Detecting Web Scraping
Stick tables store and increment counters associated with
clients as they make requests to your website. To configure
one, add a backend section to your HAProxy configuration
file and then add a stick-table directive to it. Each backend

The HAProxy Guide to Multi-Layer Security 96

can only have a single stick-table definition. We’re going
to define two stick tables, as shown:

backend per_ip_and_url_rates

stick-table type binary len 8 size 1m expire

24h

 ↪ store http_req_rate(24h)

backend per_ip_rates

 stick-table type ip size 1m expire 24h

 ↪ store gpc0,gpc0_rate(30s)

The first table, which is defined within your
per_ip_and_url_rates backend, will track the number of times
that a client has requested the current webpage during the
last 24 hours. Clients are tracked by a unique key. In this case,
the key is a combination of the client’s IP address and a hash
of the path they’re requesting. Notice how the stick table’s
type is binary so that the key can be this combination of data.

The second table, which is within a backend labelled
per_ip_rates, stores a general-purpose counter called gpc0.
You can increment a general-purpose counter when a
custom-defined event occurs. We’re going to increment it
whenever a client visits a page for the first time within the
past 24 hours.

The gpc0_rate counter is going to tell us how fast the client
is visiting new pages. The idea is that bots will visit more
pages in less time than a normal user would. We’ve arbitrarily
set the rate period to thirty seconds. Most of the time, bots
are going to be fast. For example, the popular Scrapy bot is

The HAProxy Guide to Multi-Layer Security 97

able to crawl about 3,000 pages per minute! On the other
hand, bots can be configured to crawl your site at the same
pace as a normal user would. Just keep in mind that you may
want to change the rate period from thirty seconds to
something longer, like 24 hours (24h), depending on how
many pages a normal user is likely to look at within that
amount of time.

Next, add a frontend section for receiving requests:

frontend fe_main

 bind :80

track client's IP in per_ip_rates stick

table

 http-request track-sc0 src table per_ip_rates

 # track client's source IP + URL accessed in

 # per_ip_and_url_rates stick table

 http-request track-sc1 url32+src

 ↪ table per_ip_and_url_rates unless

 ↪ { path_end .css .js .png .jpeg .gif }

 # Increment general-purpose counter in

 # per_ip_rates if client is visiting page

 # for the first time

 http-request sc-inc-gpc0(0) if

 ↪ { sc_http_req_rate(1) eq 1 }

 default_backend web_servers

The HAProxy Guide to Multi-Layer Security 98

The line http-request track-sc1 adds the client to the
stick-table storage. It uses a combination of their IP
address and page they’re visiting as the key, which you get
with the built-in fetch method url32+src. A fetch method
collects information about the current request.

Web pages these days pull in a lot of supporting files:
JavaScript scripts, CSS stylesheets, images. By adding an
unless statement to the end of your http-request
track-sc1 line, you can exclude those file types from the
count of new page requests. So, in this example, it won’t
track requests for JavaScript, CSS, PNG, JPEG and GIF files.

The http-request track-sc1 line automatically updates
any counters associated with the stick table, including the
http_req_rate counter. So, in this case, the HTTP request
count for the page goes up by one. When the count is exactly
one for a given source IP address and page, it means the
current user is visiting the page for the first time. When that
happens, the conditional statement if {
sc_http_req_rate(1) eq 1 } on the last line becomes true
and the directive http-request sc-inc-gpc0(0)
increments the gpc0 counter in our second stick table.

Now that you’re incrementing a general-purpose counter
each time a client, identified by IP address, visits a new page,
you’re also getting the rate at which that client is visiting new
pages via the gpc0_rate(30s) counter. How many unique
page visits over thirty seconds denotes too many? Tools like
Google Analytics can help you here with its Pages / Session
metric. Let’s say that 15 first-time page requests over that
time constitutes bot-like behavior. You’ll define that threshold
in the upcoming section.

The HAProxy Guide to Multi-Layer Security 99

Setting a Threshold
Now that you’re tracking data, it’s time to set a threshold that
will separate the bots from the humans. Bots will request
pages much faster, over a shorter time. Your first option is to
block the request outright. Add an http-request deny
directive to your frontend section:

The HAProxy Guide to Multi-Layer Security 100

frontend fe_main

 bind :80

 http-request track-sc0 src table per_ip_rates

 http-request track-sc1 url32+src

 ↪ table per_ip_and_url_rates unless

 ↪ { path_end .css .js .png .jpeg .gif }

Set the threshold to 15 within the time

period

 acl exceeds_limit sc_gpc0_rate(0) gt 15

 # Increase the new-page count if this is

 # the first time they've accessed this

 # page, unless they've already exceeded

 # the limit

 http-request sc-inc-gpc0(0) if

↪ { sc_http_req_rate(1) eq 1 }

!exceeds_limit

 # Deny requests if over the limit

 http-request deny if exceeds_limit

 default_backend web_servers

With this, any user who requests more than 15 unique pages
within the last thirty seconds will get a 403 Forbidden
response. Optionally, you can use deny_status to pass an
alternate code such as 429 Too Many Requests. Note that the
user will only be banned for the duration of the rate period, or
thirty seconds in this case, after which it will reset to zero.
That’s because we’ve added !exceeds_limit to the end of the
http-request sc-inc-gpc0(0) line so that if the user

The HAProxy Guide to Multi-Layer Security 101

keeps accessing new pages within the time period, it won’t
keep incrementing the counter.

To go even further, you could use a general-purpose tag
(gpt0) to tag suspected bots so that they can be denied from
then on, even after their new-page request rate has dropped.
This ban will last until their entry in the stick table expires, or
24 hours in this case. Expiration of records is set with the
expire parameter on the stick-table. Start by adding gpt0
to the list of counters stored by the per_ip_rates stick table:

backend per_ip_rates

 stick-table type ip size 1m expire 24h

 ↪ store gpc0,gpc0_rate(30s),gpt0

Then, add http-request sc-set-gpt0(0) to your
frontend to set the tag to 1, using the same condition as
before. We’ll also add a line that denies all clients that have
this flag set.

http-request sc-set-gpt0(0) 1 if exceeds_limit

http-request deny if { sc_get_gpt0(0) eq 1 }

Alternatively, you can send any tagged IP addresses to a
special backend by using the use_backend directive, as
shown:

http-request sc-set-gpt0(0) 1 if exceeds_limit

use_backend be_bot_jail if { sc_get_gpt0(0) eq 1 }

The HAProxy Guide to Multi-Layer Security 102

This backend could, for example, serve up a cached version of
your site or have server directives with a lower maxconn limit
to ensure that they can’t swamp your server resources. In
other words, you could allow bot traffic, but give it less
priority.

Observing the Data Collection
You can use the Runtime API to see the data as it comes in. If
you haven’t used it before, check out our blog post Dynamic
Configuration with the HAProxy Runtime API
(http://bit.ly/2SpOPDX) to learn about the variety of
commands available. In a nutshell, the Runtime API listens on
a UNIX socket and you can send queries to it using either
socat or netcat.

The show table [table name] command returns the
entries that have been saved to a stick table. After setting up
your HAProxy configuration and then making a few requests
to your website, take a look at the contents of the
per_ip_and_url_rates stick table, like so:

The HAProxy Guide to Multi-Layer Security 103

$ echo "show table per_ip_and_url_rates" |

 ↪ socat stdio /var/run/hapee-1.9/hapee-lb.sock

table: per_ip_and_url_rates, type: binary,

size:1048576, used:2

0x10ab92c:

key=203E97AA7F000001000000000000000000000000

use=0 exp=557590 http_req_rate(86400000)=1

0x10afd7c:

key=3CBC49B17F000001000000000000000000000000

use=0 exp=596584 http_req_rate(86400000)=5

I’ve made one request to /foo and five requests to /bar; all
from a source IP of 127.0.0.1. Although the key is in binary
format, you can see that the first four bytes are different. Each
key is a hash of the path I was requesting and my IP address,
so it’s easy to see that I’ve requested different pages. The
http_req_rate tells you how many times I’ve accessed these
pages.

Did you know? You can key off of IPv6 addresses with this
configuration as well, by using the same url32+srcfetch
method.

Use the Runtime API to inspect the per_ip_rates table too.
You’ll see the gpc0 and gpc0_rate values:

The HAProxy Guide to Multi-Layer Security 104

table: per_ip_rates, type: ip, size:1048576,

used:1

0x10ab878: key=127.0.0.1 use=0 exp=594039

gpc0=2 gpc0_rate(30000)=2

Here, the two requests for unique pages over the past 24
hours are reported as gpc0=2. The number of those that
happened during the last thirty seconds was also two, as
indicated by the gpc0_rate(30000) value.

If you’re operating more than one instance of HAProxy,
combining the counters that each collects will be crucial to
getting an accurate picture of user activity. HAProxy
Enterprise provides cluster-wide tracking with a feature
called the Stick Table Aggregator that does just that. This
feature shares stick table data between instances using the
peers protocol, adds the values together, and then returns the
combined results back to each instance of HAProxy. In this
way, you can detect patterns using a fuller set of data.

Verifying Real Users
The risk in rate limiting is accidentally locking legitimate users
out of your site. HAProxy Enterprise has the reCAPTCHA
module that’s used to present a Google reCAPTCHA v2
challenge page. That way, your visitors can solve a puzzle
and access the site if they’re ever flagged. In the next
example, we use the reCAPTCHA Lua module so that visitors
aren’t denied outright with no way to get back in.

The HAProxy Guide to Multi-Layer Security 105

http-request use-service lua.request_recaptcha

 ↪ unless { lua.verify_solved_captcha "ok" }

 ↪ { sc_get_gpt0(0) eq 1 }

Now, once an IP is marked as a bot, the client will just get
reCAPTCHA challenges until such time as they solve one, at
which point they can go back to browsing normally.

HAProxy Enterprise has another great feature: the Antibot
module. When a client behaves suspiciously by requesting
too many unique pages, HAProxy will send them a JavaScript
challenge. Many bots aren’t able to parse JavaScript at all, so
this will stop them dead in their tracks. The nice thing about
this is that it isn’t disruptive to normal users, so customer
experience remains good.

Beyond Scrapers
So far, we’ve talked about detecting and blocking clients that
access a large number of unique pages very quickly. This
method is especially useful against scrapers, but similar rules
can also be applied to detecting bots attempting to
brute-force logins and scan for vulnerabilities. It requires only
a few modifications.

Brute-force Bots
Bots attempting to brute force a login page have a couple of
unique characteristics: They make POST requests and they
hit the same URL (a login URL), repeatedly testing numerous
username and password combinations. In the previous

The HAProxy Guide to Multi-Layer Security 106

section, we were tracking HTTP request rates for a given
URL on a per-IP basis with the following line:

http-request track-sc1 base32+src

 ↪ table per_ip_and_url_rates

 ↪ unless { path_end .css .js .png .jpeg .gif }

We’ve been using http-request sc-inc-gpc0(0) to
increment a general-purpose counter, gpc0, on the
per_ip_rates stick table when the client is visiting a page for
the first time.

http-request sc-inc-gpc0(0) if

 ↪ { sc_http_req_rate(1) eq 1 } !exceeds_limit

You can use this same technique to block repeated hits on the
same URL. The reasoning is that a bot that is targeting a login
page will send an anomalous amount of POST requests to
that page. You will want to watch for POST requests only.

First, because the per_ip_and_url_rates stick table is
watching over a period of 24 hours and is collecting both GET
and POST requests, let’s make a third stick table to detect
brute-force activity. Add the following stick-table
definition:

The HAProxy Guide to Multi-Layer Security 107

backend per_ip_and_url_brueforce

stick-table type binary len 8 size 1m expire

10m

 ↪ store http_req_rate(3m)

Then add an http-request track-sc2 and an
http-request deny line to the frontend:

http-request track-sc2 base32+src

 ↪ table per_ip_and_url_bruteforce

 ↪ if METH_POST { path /login }

http-request deny if { sc_http_req_rate(2) gt 10 }

You now have a stick table and rules that will detect repeated
POST requests to the /login URL, as would be seen when an
attacker attempts to find valid logins. Note how the ACL {
path /login } restricts this to a specific URL. This is optional, as
you could rate limit all paths that clients POST to by omitting
it.

In addition to denying the request, you can also use any of
the responses discussed in the Unblocking Real Users section
above in order to give valid users who happen to get caught
in this net another chance.

Vulnerability Scanners
Vulnerability scanners are a threat you face as soon as you
expose your site or application to the Internet. Generic
vulnerability scanners will probe your site for many different

The HAProxy Guide to Multi-Layer Security 108

paths, trying to determine whether you are running any
known vulnerable, third-party applications.

Many site owners, appropriately, turn to a Web Application
Firewall for such threats, such as the WAF that HAProxy
Enterprise provides as a native module. However, many
security experts agree that it’s beneficial to have multiple
layers of protection. By using a combination of stick tables
and ACLs, you’re able to detect vulnerability scanners before
they are passed through to the WAF.

When a bot scans your site, it will typically try to access
paths that don’t exist within your application, such as
/phpmyadmin and /wp-admin. Because the backend will
respond with 404’s to these requests, HAProxy can detect
these conditions using the http_err_rate fetch. This keeps
track of the rate of requests the client has made that resulted
in a 4xx response code from the backend.

These vulnerability scanners usually make their requests
pretty quickly. However, as high rates of 404’s are fairly
uncommon, you can add the http_err_rate counter to your
existing per_ip_rates table:

backend per_ip_rates

 stick-table type ip size 1m expire 24h

↪ store

gpc0,gpc0_rate(30s),http_err_rate(5m)

Now, with that additional counter, and the http-request
track-sc0 already in place, you have—and can view via the

The HAProxy Guide to Multi-Layer Security 109

Runtime API—the 4xx rate for clients. Block them simply by
adding the following line:

http-request deny if { sc_http_err_rate(0) gt 10 }

You can also use the gpc0 counter that we are using for the
scrapers to block them for a longer period of time:

http-request sc-inc-gpc0(0) if

 ↪ { sc_http_err_rate(0) eq 1 } !exceeds_limit

Now the same limits that apply to scrapers will apply to
vulnerability scanners, blocking them quickly before they
succeed in finding vulnerabilities. Alternatively, you can
shadowban these clients and send their requests to a
honeypot backend, which will not give the attacker any
reason to believe that they have been blocked. Therefore,
they will not attempt to evade the block. To do this, add the
following in place of the http-request deny above. Be sure
to define the backend be_honeypot:

use_backend be_honeypot if

 ↪ { sc_http_err_rate(0) gt 10 }

Whitelisting Good Bots
Although our strategy is very effective at detecting and
blocking bad bots, it will also catch Googlebot, BingBot, and

The HAProxy Guide to Multi-Layer Security 110

other friendly search crawlers with equal ease. You will want
to welcome these bots, not banish them.

The first step to fixing this is to decide which bots you want
so that they don’t get blocked. You’ll build a list of good bot IP
addresses, which you will need to update on a regular basis.
The process takes some time, but is worth the effort! Google
provides a helpful tutorial (http://bit.ly/2BlCiYz). Follow these
steps:

1. Make a list of strings found in the User-Agent
headers of good bots (e.g. GoogleBot).

2. Grep for the above strings in your access logs and
extract the source IP addresses.

3. Run a reverse DNS query to verify that the IP is
indeed a valid good bot. There are plenty of bad bots
masquerading as good ones.

4. Check the forward DNS of the record you got in step
3 to ensure that it maps back to the bot’s IP, as
otherwise an attacker could host fake reverse DNS
records to confuse you.

5. Use whois to extract the IP range from the whois
listing so that you cover a larger number of IP’s. Most
companies are good about keeping their search bots
and proxies within their own IP ranges.

6. Export this list of IP’s to a file with one IP or CIDR
netmask per line (e.g. 192.168.0.0/24).

Now that you have a file containing the IP addresses of good
bots, you will want to apply that to HAProxy so that these
bots aren’t affected by your blocking rules. Save the file as
whitelist.acl and then change the http-request track-sc1
line to the following:

The HAProxy Guide to Multi-Layer Security 111

http-request track-sc1 url32+src

 ↪ table per_ip_and_url_rates

↪ unless { path_end .css .js .png .jpeg .gif }

||

 ↪ { src -f /etc/hapee-1.9/whitelist.acl }

Now, search engines won’t get their page views counted as
scraping. If you have multiple files, such as another for
whitelisting admin users, you can order them like this:

unless { src -f /etc/hapee-1.9/whitelist.acl

 ↪ -f /etc/hapee-1.9/admins.acl }

When using whitelist files, it’s a good idea to ensure that they
are distributed to all of your HAProxy servers and that each
server is updated during runtime. An easy way to accomplish
this is to purchase HAProxy Enterprise and use its lb-update
module. This lets you host your ACL files at a URL and have
each load balancer fetch updates at a defined interval. In this
way, all instances are kept in sync from a central location.

Identifying Bots By
Their Location
When it comes to identifying bots, using geolocation data to
place different clients into categories can be a big help. You
might decide to set a different rate limit for China, for

The HAProxy Guide to Multi-Layer Security 112

example, if you were able to tell which clients originated from
there. In this section, you’ll see how to read geolocation
databases with HAProxy.

Geolocation with HAProxy Enterprise
HAProxy Enterprise provides modules that will read
MaxMind and Digital Element geolocation databases
natively. Let’s see how to do this with MaxMind using
HAProxy Enterprise.

First, load the database by adding the following directives to
the global section of your configuration:

module-load hapee-lb-maxmind.so

maxmind-load COUNTRY

↪

/etc/hapee-1.9/geolocation/GeoLite2-Country.mmdb

maxmind-cache-size 10000

Within your frontend, use http-request set-header to
add a new HTTP header to all requests, which captures the
client’s country:

http-request set-header

 ↪ x-geoip-country

↪

%[src,maxmind-lookup(COUNTRY,country,iso_code)]

Now, requests to the backend will include a new header that
looks like this:

The HAProxy Guide to Multi-Layer Security 113

x-geoip-country: US

You can also add the line maxmind-update url
https://example.com/maxmind.mmdb to have HAProxy
automatically update the database from a URL during
runtime.

If you’re using Digital Element for geolocation, the same thing
as we did for MaxMind can be done by adding the following
to the global section of your configuration:

module-load hapee-lb-netacuity.so

netacuity-load 26

 ↪ /etc/hapee-1.9/geolocation/netacuity/

netacuity-cache-size 10000

Then, inside of your frontend add an http-request
set-header line:

http-request set-header

 ↪ x-geoip-country %[src,netacuity-lookup-ipv4

 ↪ ("pulse-two-letter-country")]

This adds a header to all requests, which contains the client’s
country:

x-geoip-country: US

The HAProxy Guide to Multi-Layer Security 114

To have HAProxy automatically update the Digital Element
database during runtime, add netacuity-update url
https://example.com/netacuity_db to your global
section.

Using the Location Information
You can now use the geolocation information to make
decisions. For example, you could route clients that trigger
too many errors to a special, honeypot backend. With
geolocation data, the threshold that you use might be higher
or lower for some countries.

use_backend be_honeypot if { sc_http_err_rate(0)

 ↪ gt 5 } { req.hdr(x-geoip-country) CN }

Since this information is stored in an HTTP header, your
backend server will also have access to it, which gives you
the ability to take further action from there. We won’t get into
it here, but HAProxy also supports device detection and other
types of application intelligence databases.

Conclusion
In this chapter, you learned how to identify and ban bad bots
from your website by using the powerful configuration
language within the HAProxy load balancer. Placing this type
of bot protection in front of your servers will protect you from
these crawlers as they attempt content scraping, brute
forcing and mining for security vulnerabilities.

The HAProxy Guide to Multi-Layer Security 115

HAProxy Enterprise gives you several options in how you
deal with these threats, allowing you to block them, send
them to a dedicated backend, or present a challenge to them.
Need help constructing an HAProxy configuration for bot
detection and protection that accommodates your unique
environment? HAProxy Technologies’ expert support team
has many decades of experience mitigating many types of
bot threats. They can help provide an approach tailored to
your needs.

The HAProxy Guide to Multi-Layer Security 116

The HAProxy
Enterprise WAF

Data breaches. Loss of consumer confidence. An endless

cycle of companies being compromised. Not just fly-by-night,
sketchy websites either. Large companies—companies that
you'd think would do better—are being caught without
reliable security measures in place.

There's a reason that one of the most consulted security
guides, the OWASP Top 10, is a list of web application
security risks. Applications that can be accessed online
provide opportunities for attackers the most often. They
typically listen on open ports like 80 and 443. Unlike
traditional services like FTP and SSH, it's not as though you
can just raise the drawbridge and shut out traffic to those
ports. A network firewall, which operates at the TCP layer to
restrict access to your networks, isn't the right tool to prevent
these types of threats.

Web Application Firewalls were created specifically as a
countermeasure to stop attacks against web applications.
The HAProxy Enterprise WAF supports three modes:

The HAProxy Guide to Multi-Layer Security 117

SQLi/XSS only, whitelist-only mode, and ModSecurity mode.
We will cover ModSecurity mode in this chapter. The
ModSecurity rulesets can detect and stop SQL injection
attacks (SQLi), cross-site scripting (XSS), remote file inclusion
(RFI), remote code execution (RCE), and other hostile actions.
WAFs are tools that don't just make the Internet safer for
your customers. They make doing business online viable.

In this chapter, you'll learn more about the problems a WAF
solves and get a look at how the HAProxy Enterprise WAF
provides an essential layer of defense.

A Specific
Countermeasure
We've enjoyed the benefits of network firewalls since the
1980s. They allow IT admins to filter traffic between
networks based on any of the information in the TCP
protocol: source IP, source port, destination IP, and
destination port. Don't want someone directly accessing your
database from the Internet? Put a firewall in front of it and
close off access to the outside world. In fact, common
practice is to block everything by default and only punch a
hole through for specific applications.

Next-generation firewalls (NGFW) took this to the next level.
They often include deep packet inspection (DPI) and intrusion
detection systems (IDS) that allows the firewall to open up IP
packets and look at their contents, even up to the application
layer. For instance, an IDS might analyze packets to discover

The HAProxy Guide to Multi-Layer Security 118

what type of messages they contain. Is this FTP? VoIP? HTTP
traffic from video streaming or social media websites? Or is it
a virus, matched against a set of known signatures?

Traditional network firewalls and NGFWs don't adequately
secure against the unique attacks aimed at web applications,
though. For one thing, more and more online communication
is being encrypted with SSL/TLS. An NGFW would have to
decrypt this traffic as a man-in-the-middle to inspect it.
Another problem is the level of sophistication of modern-day,
application-layer attacks. What may seem like a reasonable
HTTP request may actually be an attempt at SQL injection,
for example.

Web application firewalls are built with the intent of
recognizing and preventing attacks against websites and
web applications. The HAProxy Enterprise WAF with
ModSecurity rulesets fills in the gaps left by other types of
firewalls, protecting against the vulnerabilities listed in the
OWASP Top 10. Really, network firewalls and WAFs
complement each other well. It's always good to have
multiple layers of security.

Routine Scanning
First things first. You need a way to assess the security of
your application. There are a number of web security
scanners out there including Acunetix, Nessus, and Burp
Suite. We'll use one called OWASP Zed Attack Proxy (ZAP),
which can be downloaded and installed onto Windows,
Linux, and Mac. I've found ZAP to be one of the easier
scanners to use and it's able to detect an impressive range of

The HAProxy Guide to Multi-Layer Security 119

vulnerabilities. Also, go ahead and install sqlmap, which is a
pen testing tool laser-focused on finding web pages
susceptible to SQL injection.

Routinely scanning your applications will help to make sure
that flaws aren't slipping past you into production. It creates a
baseline against which you can compare software releases.
Injecting security into your regular development pipeline
helps to keep everyone sharp. As you build out your product's
features, you'll know early on when a vulnerability has been
introduced.

We're going to demonstrate the types of threats that a
scanner will detect and, ultimately, that a WAF will stop. To
do that, we need an application that has some known flaws
baked in. The Damn Vulnerable Web Application (DVWA) is
perfect for this because it's been built to be, well, vulnerable.

Download the sample project (http://bit.ly/2SdbQG3) from
Github. It uses Terraform to launch DVWA into a virtual
machine running on AWS EC2. In front of it, we have an
instance of HAProxy Enterprise that you can run as a free
trial. The load balancer is exposed via a public IP address,
which is assigned after Terraform has run. Remember to call
terraform destroy to delete all resources from AWS
afterwards so that you aren't billed for extra usage.

Note that when setting up the project with Terraform, you
should set the my_source_ip variable to your own IP address.
That way, the site is only accessible by you. More information
can be found in the git repository's README file.

Once you have it up, open the site in a browser.

The HAProxy Guide to Multi-Layer Security 120

Log in with the credentials admin and password. Once in,
click the Create / Reset Database button to initialize the site's
MySQL database. At this point, there is no WAF protecting
the site. It's wide open to security exploits.

Let's run sqlmap and see what if finds. When you log into
DVWA, it places a cookie in your browser called PHPSESSID
that tells the site that you're a logged-in user. So that sqlmap
can bypass the login screen and scan the site, it needs the
value of this cookie. Open your browser's Developers Tools
and view the site's cookies on the Network tab. Then, find the
PHPSESSID cookie and copy its value.

In the following command, the --cookie parameter is passed
to sqlmap with the value of the PHPSESSID cookie. You
should also give it the value of a cookie called security, which
is set to low. This tells DVWA to not use its own built-in,
practice WAF. Replace the session ID and IP address with
your own values:

The HAProxy Guide to Multi-Layer Security 121

/usr/bin/python2 /usr/bin/sqlmap --random-agent

 ↪ --cookie="PHPSESSID={YOUR-SESSION-ID};

 ↪ security=low" --dbs

 ↪ --url="http://{IP}/vulnerabilities/sqli/?id=&

 ↪ Submit=Submit" -p id

This command probes the /vulnerabilities/sqli page for SQL
injection flaws, substituting various strings for the id
parameter in the URL. When it's successful, it will gain access
to the backend MySQL instance and enumerate the
databases it finds:

[09:24:38] [INFO] the back-end DBMS is MySQL

web server operating system: Linux Debian

web application technology: Apache 2.4.25

back-end DBMS: MySQL 5.0.12

[09:24:38] [INFO] fetching database names

available databases [2]:

[*] dvwa

[*] information_schema

As you can see, sqlmap was able to find information about
the website's databases and list out sensitive information.
That's certainly a security weakness! You'll see in the next
section how the HAProxy Enterprise WAF stops this from
happening.

Next, let's use the ZAP scanner to find pages susceptible to
cross-site scripting. You can use ZAP to scan for other sorts
of vulnerabilities, too, if you like. Open ZAP and, from the
right-hand panel, choose Launch Browser.

The HAProxy Guide to Multi-Layer Security 122

In the browser that opens, go to the site and log in. Using
Launch Browser helps ZAP to learn the layout of the website.
You can also have it crawl the site on its own, but that isn't as
effective. To demonstrate a vulnerability, we'll focus on
cross-site scripting (XSS) by going to the XSS (Reflected)
page and typing a value into the What's your name? field.
Then click Submit. After that, you can close the browser
window.

The HAProxy Guide to Multi-Layer Security 123

When you go back to ZAP, you'll see that it has filled in the
address of the DVWA website under Sites in the left-hand
panel. Expand that folder and then expand the vulnerabilities
folder. You should see that it captured two GET requests for
the /vulnerabilities/xss_r page: GET:xss_r and
GET:xss_r(name).

The HAProxy Guide to Multi-Layer Security 124

Right-click on GET:xss_r(name) and choose Attack > Active
Scan. ZAP will inspect that page, trying various strings for the
name URL parameter. After it finishes, open the Alerts tab at
the bottom and you should see that a Cross Site Scripting
(Reflected) vulnerability was discovered.

We need to beef up our defenses so that sqlmap and ZAP
don't find these vulnerabilities. In the next section, you'll see
how to set up the WAF module in HAProxy Enterprise.

The HAProxy Guide to Multi-Layer Security 125

HAProxy Enterprise
WAF
The WAF module utilizes ModSecurity to classify and detect
malicious behavior. You can add your own rules, but you get
immediate access to the OWASP ModSecurity Core Rule
Set (CRS). It protects against many common threats.

Log into your HAProxy load balancer so that you can enable
the WAF module. If you're following along with the sample
project, then you can use SSH to log into the VM via its public
IP address. Use the haproxy_demo.pem file as your SSH key:

ssh -i ./haproxy_demo.pem

 ↪ ubuntu@[HAPROXY_IP_ADDRESS]

You need to download the CRS. There's a script that will take
care of this for you. Simply run the following command and
the files will be downloaded to the
/etc/hapee-1.9/modsec.rules.d directory:

sudo

/opt/hapee-1.9/bin/hapee-lb-modsecurity-getcrs

Next, go to /etc/hapee-1.9 and edit the hapee-lb.cfg file with
your favorite editor for these situations (vi, nano, etc.). Add
the following module-load directive to the global section:

The HAProxy Guide to Multi-Layer Security 126

module-load hapee-lb-modsecurity.so

Also add a filter directive to your HAProxy frontend to
enable protection for that proxy. Here's what it looks like:

frontend fe_main

 filter modsecurity owasp_crs rules-file

↪

/etc/hapee-1.9/modsec.rules.d/lb-modsecurity.conf

Then save the file and restart the load balancer services with
the hapee-1.9 command:

sudo hapee-1.9 restart

At this point, the WAF is in detection-only mode. That means
that it will classify attacks as it sees them and write warnings
to the file /var/log/modsec_audit.log. However, it will not
block any requests. To turn on blocking, edit the file
/etc/hapee-1.9/modsec.rules.d/modsecurity.conf. Near the
beginning, change SecRuleEngine DetectionOnly to
SecRuleEngine On. Then restart the load balancer services
again.

The HAProxy Guide to Multi-Layer Security 127

Did you know? The modsec_audit.log file should be disabled
in production use, since writing to disk will hinder
performance.

Retesting with WAF
Protection
Now that it is configured, a quick test with sqlmap shows
that the WAF is working (remember to get the value of the
PHPSESSID cookie):

/usr/bin/python2 /usr/bin/sqlmap --random-agent

 ↪ --cookie="PHPSESSID={SESSION ID};security=low"

 ↪ --dbs

 ↪ --url="http://{IP}/vulnerabilities/sqli/?id=

 ↪ &Submit=Submit" -p id

[WARNING] GET parameter 'id' is not injectable

[CRITICAL] all tested parameters appear to be not

injectable.

[WARNING] HTTP error codes detected during run:

403 (Forbidden) - 1 times

Here, even though we gave it a page that we know if
susceptible to SQL injection, it wasn't able to find it. That's
because the WAF is blocking requests that seem malicious
with 403 Forbidden responses.

The HAProxy Guide to Multi-Layer Security 128

Did you know? When sqlmap runs it caches the results. So, if
you ran it while the WAF was in detection-only mode, you'll
want to delete the cache. It can be found under your user
directory, ~/.sqlmap/output.

Stopping sqlmap from gaining access to the DVWA MySQL
database is no small accomplishment! The tool scans for half
a dozen types of relational databases and throws a barrage
of injection attacks at its target. Yet, not a single one got
through.

What you may find is that ModSecurity can be too assertive,
triggering false positives and blocking legitimate users. If this
is the first time you've used it, test it for a while in
detection-only mode. Then you can determine which rules are
right for your application and traffic, whitelisting those that
are not or adjusting the severity levels of the rules. Just don't
whitelist so much that the WAF loses its effectiveness!

Next, try running ZAP again, now that the WAF is enabled.
Using the same steps as before, scan the XSS (Reflected)
page for cross-site scripting vulnerabilities. Or, if you're
feeling adventurous, try browsing around the rest of the site
to map out more paths for ZAP. Then start an Active Scan
against the vulnerabilities path.

The HAProxy Guide to Multi-Layer Security 129

The WAF rejects many of the suspicious requests with 403
Forbidden responses. This definitely strengthens your
security posture. Remember, this was a website purposely
built to be insecure. Your own applications will, no doubt,
have more safeguards. However, it's never easy to catch all of
the potential pitfalls and the HAProxy WAF module will
create an essential layer of defense.

In an upcoming release of HAProxy Enterprise, you will be
able to configure ModSecurity to defer its decision making to
HAProxy. This will give you a wider range of options for how
you deal with suspicious clients, beyond the blocking
behavior of the WAF. ModSecurity will set variables, which
the load balancer will be able to see, and action can be
decided by ACL statements.

acl waf_blocked var(txn.owasp_crs.block) -m bool

http-request send-challenge ... if waf_blocked

For example, you might show the client a Javascript challenge
by using the Antibot module if they're flagged as potentially
malicious. Subscribe to our blog to be alerted when this
functionality becomes available!

The HAProxy Guide to Multi-Layer Security 130

Conclusion
In this chapter, we demonstrated the need for a web
application firewall to protect you from threats like SQL
injection and cross-site scripting. A WAF can filter out
malicious behavior before it gets to your application, even
defending against threats before you become aware of them.
It's important to routinely scan for vulnerabilities and to share
the responsibility for security with your entire team.

You've learned the building blocks of HAProxy: ACLs, stick
tables and maps. Combined, they allow you to create
countermeasures to a variety of threats including bots and
DDoS. You also learned about the HAProxy Enterprise WAF.
Where to go from here? Visit us online and contact us to learn
how HAProxy can be used to solve your specific use case.

Want to know when content like this is published? Subscribe
to our blog or follow us on Twitter @HAProxy. You can also
join the conversation on Slack at https://slack.haproxy.org.

The HAProxy Guide to Multi-Layer Security 131

Visit us at https://www.haproxy.com

The HAProxy Guide to Multi-Layer Security 132

	security book digital cover final
	HAProxy Security

